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Abstract. This work presents new results and applications for the continuous Steiner
symmetrization. There are proved some functional inequalities, e.g. for Dirichlet-type
integrals and convolutions and also continuity properties in Sobolev spaces W1;p.
Further it is shown that the local minimizers of some variational problems and the
nonnegative solutions of some semilinear elliptic problems in symmetric domains
satisfy a weak, `local' kind of symmetry.
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1. Introduction

Consider a variational problem of the following form

�P� J�v� �
Z




�G�x; v; jrvj� ÿ F�x; v��dxÿ! Stat:!; v 2 K; �1:1�

where K is a closed subset of W
1;p
0 �
�, p � 1, and 
 is a domain in Rn. The nonnegative

minimizers of problems like (P) may describe stable (`ground') states of equilibria in

plasma physics, heat conduction and chemical reactors (for examples see [Di, F, K1]). We

ask for symmetries of the solutions of (P), if G;F and 
 have certain `symmetries'.

A well-known result is the following. Let v? denote the Schwarz symmetrization of v
(i.e. the radially symmetric nonincreasing rearrangement). Assume that 
 � Rn,

G � G�jrvj� and G is a nonnegative and convex function with G�0� � 0, F � F�v�
and F is continuous, and K contains only nonnegative functions and has the property that,

if v 2 K, then also v? 2 K. Then

J�v?� � J�v�: �1:2�
If, in addition, problem (P) has a unique global minimizer u, then we can infer from (1.2)

that u � u?. �Note that this means that u is radially symmetric nonincreasing, i.e.

u � u�jxj� and u is nonincreasing in r; �r � jxj�:�
However, if the global minimizer is not unique, then the question arises whether there

could be equality in (1.2) if v 6� v?. Unfortunately this case cannot be excluded, as the

following simple example shows (see [BZ]).

Example 1.1. For some p � 1, let
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J�v� :�
Z

Rn

jrvjpdx: �1:3�

Then there are nonnegative smooth functions v with compact support which are not

radially symmetric and satisfy J�v� � J�v?�. Their level sets fv > cg; c > 0, are nested,

but nonconcentric balls, and the set frv � 0g has nonempty interior, that is the graph of

v has `plateaus'.

Physically relevant are not only the global minima but also the local minima and

critical points of (P). To show symmetry properties of these functions, the above argument

fails, because in general the Schwarz symmetrization v? is not close to v. Even though

one expects symmetric solutions in many cases, there are again exceptions. Here is

another typical example.

Example 1.2. Semilinear problem for the p-Laplacian: Let B be a ball in Rn with centre

0, f 2 C�R�0 �; p > 1, and let u 2 C2�B� satisfy

ÿ�pu � ÿr�jrujpÿ2ru� � f �u�; u > 0 in B;

u � 0 on @B: �1:4�
Note that the associated variational problem isZ

B

1

p
jrvjp ÿ F�u�

� �
dxÿ! Stat:!; v 2 W

1;p
0 �B�; �1:5�

where

F�v� :�
Z v

0

f �z�dz:

If p � 2 and f is smooth then it is well-known (see [GNN]) that

u � u? and

�@u�=�@r� < 0 in B n f0g; �r � jxj�: �1:6�
However, if p > 2 or if f is not smooth, then the conclusion (1.6) holds only under some

additional assumptions. Below we give a short (but not complete) list of sufficient criteria

for (1.6):

(i) p � 2 and f � f1 � f2, where f1 is smooth and f2 is increasing, [GNN];

(ii) p � n and f �v� > 0 for v > 0, [KP], (see also [Lio1] for the case p � n � 2);

(iii) f 2 C1�R�0 � and ru vanishes only at 0, [BaN];

(iv) f 2 C1�R�0 � and 1 < p < 2, [DamPa].

The proofs for (i), (iii) and (iv) use the so-called moving plane method which turned

out to be a very powerful technique in proving symmetry results for positive solutions of

semilinear elliptic problems in symmetric domains during the last two decades (see e.g.

Se, GNN, BeN, Da, Dam, DamPa, SeZ). The moving plane technique makes essential use

of the maximum principle for elliptic equations and exploits the invariance of the equation

with respect to reflections. If the differential operator of the problem degenerates then the

method is often applicable only under additional assumptions on the solution. This

concerns, for instance, the p-Laplacian operator for p > 2 (compare the case (iii) above).

The result (ii) was proved by combining an isoperimetric inequality and a Pohozaev-

type identity. However this method is not applicable if p 6� n.
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One can construct radially symmetric solutions of (1.4) for which the second condition

in (1.6) fails if either p > 2 and f is smooth, or if p 2 �1; 2� and f is HoÈlder continuous

(see [GKPR]). Moreover, if p � 2 and f is only continuous and changes sign, then we

cannot hope that the solution of (1.4) is radially symmetric. Below we give examples of

solutions in the case p � 2 which have a plateau and two radially symmetric `shifted

bumps' on it. Note that similar examples can also be found in the recent paper [SeZ].

Let p � 2; s > 2,

w�x� � �1ÿ jxj2�s if jxj � 1

0 if jxj > 1

(
; and

v�x� � 1 if jxj < 5

1ÿ ��jxj2 ÿ 25�=11�s if 5 � jxj � 6

�
:

We choose x1; x2 2 B4 with jx1 ÿ x2j � 2 and set

u�x� :� v�x� � w�xÿ x1� � w�xÿ x2� 8x 2 B6:

The graph of u is built up by three radially symmetric `mountains', one of them having a

`plateau' at height 1 while the other two are congruent to each other with their `feet' lying

on the plateau (see figure 1).

After a short computation we see that u is a solution of (1.4) with 
 � B6 and

f �u� :�

�2s=11�pÿ1�25� 11�1ÿ u�1=s�� p=2�ÿ1�1ÿ u�pÿ� p=s�ÿ1

� f�50=11��pÿ 1��sÿ 1� � �2psÿ 2sÿ p� n��1ÿ u�1=sg
if 0 � u � 1;

�2s�pÿ1�1ÿ �uÿ 1�1=s�� p=2�ÿ1�uÿ 1�pÿ� p=s�ÿ1

� fÿ2�sÿ 1��pÿ 1� � �2psÿ 2sÿ p� n��uÿ 1�1=sg
if 1 � u � 2:

8>>>>>>>>>><>>>>>>>>>>:

Figure 1.
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If p � 2 and s > 2 then we have f 2 C1��0; 2�nf1g� \ C1ÿ�2=s���0; 2��. The difference

quotient of f is not bounded below near u � 1, i.e. f 62 C1��0; 2��. In contrast, if p > 2 and

s > p=�pÿ 2�, then we have f 2 C1��0; 2��.
On the other hand, the functions in the above examples are distinguished by some

`local' symmetry which can be described as follows.

(LS) Every connected component of the subset

f�x; u�x�� : 0 < u�x� < sup u; e � ru 6� 0g
of the graph of u finds a congruent counterpart after reflection about some �nÿ 1�-
dimensional hyperplane fx : x � e � �g, � 2 R, where e is some unit vector.

The purpose of this work is to obtain those weak symmetries for solutions of (P). The

main analytic tool in the proofs will be some variant of continuous Steiner

symmetrization which was developed in [B1]. Our approach is closely related to the

corresponding variational problems of the differential equations. Therefore the

applicability of the method seems to be restricted to equations in divergence form. On

the other hand, we can also deal with degenerate elliptic operators. Furthermore, our

regularity assumptions are rather mild. In most cases we only require that the solutions

are differentiable in the interior of the domain and continuous up to the boundary, and the

nonlinearity in the equation does not need to be smooth.

Given a Banach space X of measurable functions �e.g. Lp�Rn�; p 2 �1;�1��, and a unit

vector e 2 Rn, a continuous Steiner symmetrization is a continuous homotopy

t 7ÿ!vt; 0 � t � �1;
which connects v 2 X with its Steiner symmetrization in direction e, v� (see Definition

2.6 and note the difference in notation to the Schwarz symmetrization v?), such that

v0 � v and v1 � v�.
Clearly one looks for paths along which

J�vt� � J�v�; t 2 �0;�1�; �1:7�
whenever

J�v�� � J�v�:
Bibliographical remarks on such homotopies were given in [B2]. Let us mention some

related contributions which are connected with the polarization of a function or a set.

This very simple kind of rearrangement was often used in the last decade to prove

functional inequalities for symmetrizations (see e.g. [Du, Be, Ba] and the references cited

therein).

Solynin [So] applied polarization methods to show that some capacities in the complex

plane decrease under some type of continuous Steiner symmetrization. We mention that

the same construction is much more simple for convex sets and was first used by McNabb

[McN].

Finally, one can find a continuous perturbation of a given function (not just a

homotopy!) which is formed by a certain scale of polarizations of this function (see

[B3, BS]). This type of continuous rearrangement can be used to prove the symmetry of

local minimizers for certain variational problems with potentials in a very simple manner.

Our variant of continuous symmetrization is a semigroup and satisfies the family of

inequalities (1.7) for a large number of functionals, in particular for the Dirichlet-type
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integrals (1.3). In addition, it allows the following characterization of locally symmetric

functions (see Theorem 6.2 for a more general formulation).

Let B be a ball in Rn with centre 0 and p 2 �1;�1�. Further let u 2 W
1;p
0 �B� \ C1�B�

and u � 0. Then, ifZ
B

�jrutjp ÿ jrujp�dx � o�t� as t& 0; �1:8�

u satisfies the symmetry property (LS).

The symmetry proofs in this work depend on a number of technical steps. Let us

explain the main line by considering the model equation (1.4).

Step 1. By multiplying (1.4) with �ut ÿ u� and then by integrating we obtainZ
B

jrujpÿ2rur�ut ÿ u�dx �
Z

B

f �u��ut ÿ u�dx: �1:9�

(Note that, if u 2 W
1;p
0 �B� is nonnegative, then the symmetrized functions ut, t 2 �0;�1�,

also belong to W
1;p
0 �B� (see x 3), so that �ut ÿ u� is an admissible function.)

Step 2. One shows that the right-hand side of (1.9) is of order o�t� as t& 0 (see xx 4

and 5).

Step 3. By convexity the left-hand side of (1.9) is less than or equal to

1

p

Z
B

�jrutjp ÿ jrujp�dx;

and this integral is less than or equal to 0 by (1.7) (see x 3). This yields (1.8), and so u is

locally symmetric (see x 6).

Now we give an outline of our paper. In x 2 we give a new definition of the variant of

continuous symmetrization which was investigated in [B2]. This new definition appears

to be more transparent than the old one since it already contains the main properties of the

continuous rearrangement, namely equimeasurability, monotonicity and the semi-group

property. We show that open (compact) sets are transformed into open (respectively

compact) sets under continuous symmetrization. At the end we recall some of the

inequalities and continuity properties that we have derived in [B2] and which we will

frequently use in our proofs.

The following xx 3, 4 and 5 deal with properties of symmetrized functions in Sobolev

spaces W1;p. Most of these results are needed for the proofs of our symmetry theorems

but a few of them are of independent interest in the theory of rearrangements. Those

readers who are mostly interested in applications might skip these sections and return to

them later. In x 3 we prove inequalities which compare some weighted norm of a non-

negative function u 2 W1;p�Rn� with the same norm of ut. Note that similar inequalities

are known for Steiner symmetrization and for the so-called starshaped rearrangements

(see [K1, K4, BM] and [B4]). The proof is based on an approximation argument with a

special dense subclass of piecewise smooth functions (called `good' functions). These

functions have the property that they oscillate only finitely often along any straight line

lying in the direction of the symmetrization. In x 4 we show that continuous Steiner

symmetrization is continuous from the right with respect to the parameter t in Sobolev
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spaces W1;p�Rn�, 1 � p < �1. In x 5 we study the behaviour of some nonlinear integral

functionals for t& 0 and show that it is approximately linear. In x 6 we investigate locally

symmetric functions (see property (LS) above). A purely analytic description in terms of

continuous Steiner symmetrization is given by Theorem 6.2. The preceding investigations

enable us to prove that local minimizers ± and also the corresponding weak solutions ± of

problem (P) are locally symmetric in `symmetric' situations (Theorems 7.1±7.3 of x 7).

We point out that it is possible in many cases to derive from the local symmetry

additional symmetries such as Steiner symmetry or radial symmetry (see [B4, B6]). Some

further results in this direction will be published in a forthcoming paper.

2. Preliminaries

We introduce some notation. Let Rn be the Euclidean space, R�0 � �0;�1� and

R� � �0;�1�. If n � 2 and x 2 Rn, then we write

x � �x0; y�; x0 � �x1; . . . ; xnÿ1�; y � xn;

and jxj for the norm of x. Br�x0� denotes the open ball in Rn with radius r centered at x0,

and we write Br � Br�0�. By !n we denote the volume of the n-dimensional unit ball in

Rn. For any set M in Rn we denote with M its closure and with ��M� its characteristic

function. If A;B are two open or compact sets then A� B :� fz : z � x� y; x 2 A; y 2 Bg
denotes their Minkowski sum. Let M�Rn� be the set of Lebesgue measurable ±

measurable in short ± sets in Rn with finite measure. If M 2M�Rn� then we denote by jMj
its n-dimensional measure and by S�M� � �S1�M�; . . . ; Sn�M�� the centre of gravity where

Si�M� � jMjÿ1

Z
M

xi dx; i � 1; . . . ; n:

We write M�N for the symmetric difference �M n N� [ �N nM� of two measurable sets

M and N. Generally we treat measurable sets only in a.e. sense, i.e. we write

M � N()jM�Nj � 0 and

M � N()jM n Nj � 0:

If 
 is an open set in Rn and p 2 �1;�1� then we denote by k � kp the usual norm in the

space Lp�
�. Sometimes we will write

kukp;G :�

Z
G

jujpdx

� �1=p

if 1 � p < �1

ess sup
G

juj if p � �1

8>><>>: ;

to indicate the integration over a subset G of 
. By W1;p�
� we denote the Sobolev space

of functions u 2 Lp�
� having generalized partial derivatives uxi
2 Lp�
�, i � 1; . . . ; n,

and we write

kukW1;p�
� :� kukp �
Xn

i�1

kuxi
kp

for the norm in this space. By W
1;p
0 �
� we denote the completion of C10 �
� under the

norm k � kW1;p�
�. Recall that W
1;p
0 �Rn� � W1;p�Rn� (see [A]). By C

0;1
0 �
� we denote the

162 Friedemann Brock



space of Lipschitzean functions with compact support in 
. For any function space the

subscript `�' denotes the corresponding subspace of nonnegative functions, e.g. L
p
��
�,

W
1;p
0��
�, C

0;1
0��
�; . . . :

A function F : R�0 ! R�0 is called a Young function if F is continuous and convex and

if F�0� � 0. Finally, let S�Rn� denote the class of real measurable functions u satisfying

jfx 2 Rn : u�x� > cgj < �1 8c > inf u:

Note that L
p
��Rn� and W

1;p
� �Rn�, 1 � p < �1, are subspaces of S��Rn�.

Next we give the definitions of some well-known symmetrizations.

(1) Let M 2M�R�, and let M be open or compact. Then set

M� :� �ÿ�1=2�jMj;��1=2�jMj� if M is open

�ÿ�1=2�jMj;��1=2�jMj� if M is compact and M 6� ;:

(
�2:1�

If M 2M�R� is neither open nor compact, then M� is given by the first formula in (2.1)

in a.e. sense. M� is called the symmetrization of M.

If u 2 S�R� then the function

u��x� :�
supfc > inf u : x 2 fu > cg�g if x 2

[
c>inf u

fu > cg�

inf u if x =2
[

c>inf u

fu > cg�

8>><>>: �2:2�

is called the symmetrization or the symmetric nonincreasing rearrangement of u.

Note that u�x� is symmetric with respect to zero, nonincreasing for x > 0, and we have

fu > cg� � fu� > cg 8c > inf u: �2:3�
(2) Let n � 2 and M 2 M�Rn�. For every x0 2 Rnÿ1 we set

M�x0� :� fy 2 R : �x0; y� 2 Mg; �intersection of M with �x0;R��:
Note that every set M 2 M�Rn� has the representation

M � fx � �x0; y� : y 2 M�x0�; x0 2 Rnÿ1g;
where M�x0� 2 M�R� for almost every x0 2 Rnÿ1. The set

M� :� fx � �x0; y� : y 2 �M�x0���; x0 2 Rnÿ1g �2:4�
is called the Steiner symmetrization of M with respect to y. Note that M� is symmetric

and convex with respect to the hyperplane fy � 0g. Moreover the sets �M�x0��� and thus

also M� are pointwise given by formula (2.4) if M is open or compact. Also it is well-

known that if M is open (respectively compact) then M� is again open (respectively

compact).

If u 2 S�Rn�, then the function

u��x0; y� :�
supfc> inf u : y 2fu�x0; ��> cg�g if y 2

[
c>inf u

fu�x0; ��> cg�

inf u if y =2
[

c>inf u

fu�x0; �� > cg�

8>><>>:
�2:5�
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is called the Steiner symmetrization of u. Note that u��x0; y� is symmetric with respect to

fy � 0g, nonincreasing in y for y > 0, and we have

fu�x0; �� > cg� � fu��x0; �� > cg for c > inf u and x0 2 Rnÿ1: �2:6�
(3) Let M as in (2) and let r > 0 satisfy jMj � jBrj � !nrn. If M is open or compact, then

set

M? :� Br if M is open

Br if M is compact and M 6� ;:

(
�2:7�

(Notice the difference between M? and M�!)
If M is neither open nor compact then M? is given by the first formula in (2.7) in the

a.e. sense. M? is called the Schwarz symmetrization of M.

If u 2 S�Rn� then the function

u?�x� :�
supfc > inf u : x 2 fu > cg?g if x 2

[
c>inf u

fu > cg?

inf u if x =2
[

c>inf u

fu > cg?

8>><>>: �2:8�

is called the Schwarz symmetrization or the (radially) symmetric decreasing rearrange-

ment of u. Note that u? can be written as u? � u?�jxj� and is nonincreasing in jxj, and we

have

fu > cg? � fu? > cg 8c > inf u: �2:9�
Further let us mention that for continuous functions u the level sets in (2.3), (2.6) and

(2.9) are open such that the corresponding symmetrizations of u are pointwise given by

these formulas. Also it is well-known that these symmetrizations are then continuous, too.

Clearly for measurable functions the identities (2.3), (2.6) and (2.9) still hold in a.e. sense

(and (2.6) for a.e. x0 2 Rnÿ1).

Remark 2.1. It is more convenient in the literature to define the symmetrizations of

arbitrary measurable sets and functions pointwise (see e.g. [K1]). (For instance in case

of the Steiner symmetrization this can be achieved by agreeing that u��x0; y� is right- (or

left-) continuous in y for y > 0.) But it will turn out that we cannot give a pointwise

definition of continuous symmetrization for arbitrary measurable sets and functions.

Since the Steiner symmetrization will appear in that context as a special case we prefered

the above settings.

This paper deals with a variant of continuous Steiner symmetrization which was

introduced by the author in [B2]. Below we give a new and much shorter definition:

DEFINITION 2.1

Continuous symmetrization of sets in M�R�: A family of set transformations

Et :M�R�ÿ!M�R�; 0 � t � �1;
satisfying the properties �M;N 2M�R�; 0 � s; t � �1�

(i) jEt�M�j � jMj, (equimeasurability),

(ii) If M � N, then Et�M� � Et�N�, (monotonicity),
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(iii) Et�Es�M�� � Es�t�M�, (semigroup property),

(iv) If I � �y1; y2� is a bounded closed interval, then Et�I� � �yt
1; y

t
2�, where

yt
1 � 1

2
�y1 ÿ y2 � eÿt�y1 � y2��;

yt
2 � 1

2
�y2 ÿ y1 � eÿt�y1 � y2��; �2:10�

is called a continuous symmetrization.

Remark 2.2. One immediately verifies that the rules for the formation of symmetrized

intervals (2.10) are consistent with (i)±(iii). Note also that there are possible other variants

of the continuous symmetrization by modification of the formulas (2.10) (see [K2]).

Some of the results in the following sections 2±4 could be proved similarly using these

modified definitions. The present variant of continuous symmetrization can be used to

give another analytic description of the symmetry property (LS) (see Theorem 6.2) which

plays a central role in our approach. We underline that Theorem 6.2 is not true for the

continuous symmetrization of [K2] in view of the examples given in ([B2], Remark 9).

Therefore we will concentrate ourselves upon the present version.

From now on we will write for simplicity Mt :� Et�M� for the symmetrized sets.

Theorem 2.1. There exists a family of set transformations Et, 0 � t � �1, satisfying

(i)±(iv). For every M 2 M�R� the map t 7ÿ!Mt, 0 � t � �1, is a homotopy, i.e.

M0 � M; M1 � M�: �2:11�
Finally, if M 2M�R� is open, then Mt has an open representative for every t 2 �0;�1�.

Proof. First note that the properties (i) and (ii) imply

�M [ N�t � Mt [ Nt; �2:12�
�M \ N�t � Mt \ Nt and �2:13�
jM�Nj � jMt�Ntj: �2:14�

Now the proof is in several steps. Our aim is to give an explicit construction of the sets

Mt; t 2 �0;�1�, and to show the uniqueness of this construction.

(1) Let M be simple, that is M � [m
k�1 Ik, where the Ik's are disjoint bounded closed

intervals. From (2.12) it follows that we must have

Mt �
[m
k�1

It
k 8t 2 �0;�1�:

The intervals It
k are disjoint for

t � t1 :� min log
2jS�Ij� ÿ S�Ik�j
jIjj � jIkj : 1 � j; k � m

� �
;

and for t � t1 some of them meet each other in their endpoints. In view of the equi-

measurability (i) we must therefore have

Mt �
[m
k�1

It
k for 0 � t � t1: �2:15�
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Furthermore, since the family Mt, 0 � t � �1, must satisfy the semigroup property (iii),

we can argue analogously for parameters t � t1 by using the formula Mt � �Mt1�tÿt1 .

Thus we get by induction numbers m �: m0 > m1 > � � � > mNÿ1 :� 1 and 0 �: t0 < t1
< � � � < tN :� �1, and bounded closed intervals Ik;l, k � 1; . . . ;ml, such that for any

t 2 �tl; tl�1� and any l 2 f0; . . . ;N ÿ 1g

Mt �
[ml

k�1

�Ik; l�tÿtl ;

where the intervals �Ik;l�tÿtl are pairwise disjoint for t < tl�1, and where some of them

coalesce for t � tl�1. Moreover

jMtl�1 �Mtj ÿ! 0 as t% tl�1; l � 0; . . . ;N ÿ 1:

Finally (2.11) is satisfied. Vice versa, it is easy to see that the above construction yields a

family of set transformations which satisfies (i)±(iv) in the subclass of simple sets.

Furthermore, by using the rule (2.14) we check that this construction is unique. Note also,

that since we may add arbitrary nullsets to the sets Mt ± the above representations remain

unchanged if the Ik's are open bounded intervals.

(2) Let M be open and t 2 �0;�1�. Then we have M � [�1k�1Ik, where the Ik's are open,

pairwise disjoint intervals. Setting Mm :� [m
k�1Ik, m � 1; 2; . . . , we must then have

Mt � [�1m�1Mt
m by (2.12). (Note that the sets Mt

m are well-defined by part (1)!) Since

jMmj � jMt
mjÿ!jMj as m! �1, and since (ii) must be fulfilled, this leads to

Mt �
[�1
m�1

Mt
m: �2:16�

By using (2.14) and part (1), we check easily, that the family Mt, 0 � t � �1; given by

(2.16) does not depend on the enumeration of the intervals Ik.

Vice versa, by using again (2.14), we see that the above construction satisfies all the

properties (i)±(iv) in the subclass of open sets, and that this construction is unique. In

particular, formula (2.16) shows that Mt has an open representative and that (2.11) is

again satisfied.

(3) Let M 2M�R�. Then we have a representation

M �
\�1
n�1

On; �2:17�

where On � On�1, n � 1; 2; . . ., are open sets. To satisfy (2.13), we must also have

Mt � \�1n�1Ot
n. On the other hand, we have that Ot

n � Ot
n�1, n � 1; 2; . . . , that is jOt

njÿ!
jMj as n! �1. The rule (i) forces the following representation,

Mt �
\�1
n�1

Ot
n: �2:18�

In view of (2.14) and part (2) we see that the set Mt given by (2.18) is independent of the

representation (2.14). Furthermore, by using part (2) and once more formula (2.14), we

check that the above construction satisfies the rules (i)±(iv) in the classM�R�, and that

this construction is the only one, satisfying these properties. Finally, (2.11) is satisfied by

part (2) and (2.18). &
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Theorem 2.1 enables us to give a pointwise definition of the continuous symmetriza-

tion of open sets.

DEFINITION 2.2

Continuous symmetrization of open sets in M�R�: Let M 2M�R� be open and

t 2 �0;�1�. Then the set

Mt;O :�
[
fU : U is an open representative of Nt; N open; N �� Mg

�2:19�
is called the precise (open) representative of Mt.

One verifies easily that the above definitions of continuous symmetrization on the real

axis are equivalent to those given in [B2]. Next we repeat the definition of the continuous

Steiner symmetrization of [B2].

DEFINITION 2.3

Continuous (Steiner) symmetrization of sets in M�Rn�: Let M 2M�Rn�, n � 2. Then

the family of sets

Mt :� fx � �x0; y� : y 2 �M�x0��t; x0 2 Rnÿ1g; 0 � t � �1; �2:20�
is called the continuous Steiner symmetrization of M. If M is open and t 2 �0;�1�, then

the set

Mt;O :� fx � �x0; y� : y 2 �M�x0��t;O; x0 2 Rnÿ1g �2:21�
is called the precise representative of Mt. Here the relation `̀ �'' in (2.21) has to be

understood in the pointwise sense.

Remark 2.3. (1) Note that if M 2M�Rn�, then we have by the above definition

M0;O � M and M1;O � M� in the pointwise sense. (2) According to ([B2], Theorem 4)

the properties listed in Theorem 2.1 remain valid for continuous Steiner symmetrization

�n � 2�. Below we give three further properties:

(a) If M;N 2M�Rn� are open sets with M � N, then

distfM; @Ng � distfMt;O; @Nt;Og 80 � t � �1: �2:22�
It is easy to verify (compare also [BS]) that (2.22) yields the following:

(b) Smoothing property: If M 2 M�Rn�, t 2 �0;�1� and r > 0, then

Mt;O � Br � �M � Br�t;O and �2:23�
Mt;O n �@Mt;O � Br� � �M n �@M � Br��t;O: �2:24�

From the Definitions 2.1±2.3 we immediately derive the following property:

(c) Continuity from the inside: If fMkg is an increasing sequence of open sets with

j [�1k�1 Mkj < �1, then

[�1
k�1

�Mk�t;O �
[�1
k�1

Mk

 !t;O

8t 2 �0;�1�: �2:25�
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Theorem 2.1 suggests that if M 2 M�Rn� is open then the precise representatives Mt;O,

t 2 �0;�1�, should be open too. It was kindly pointed out to me by Buttazzo that this fact

is missing in [B2]. Nevertheless its proof is simple and requires no more than the

monotonicity (Definition 2.1(ii)) and the properties (b) and (c) from Remark 2.3. This

observation was first made by Sarvas [Sa] in a context of general rearrangements.

Lemma 2.1. Let M 2M�Rn� and open. Then the sets Mt;O, 0 � t � �1, are open too.

Proof. We fix t 2 �0;�1�. In view of (2.25) we have

Mt;O �
[�1
k�1

�M n�@M � �1=k�B1��t;O:

By the monotonicity (Definition 2.1(ii)) and by (2.24) this yields

Mt;O �
[�1
k�1

�Mt;O n�@Mt;O � �1=k�B1��;

which means that Mt;O is open. The lemma is proved. &

Remark 2.4. Similarily as in the case of the Steiner and Schwarz symmetrization it is also

possible to give the continuous symmetrization of compact sets a pointwise meaning (see

[B4]). But since we do not need such a construction in this paper we omit the details.

From now on let us agree that if we speak about the continuous symmetrization of open

sets, then we always mean their precise representatives, and we omit the superscript O.

DEFINITION 2.4

Continuous (Steiner) symmetrization of functions: Let u 2 S�Rn�. Then the family of

functions ut, 0 � t � �1, defined by

ut�x� :�
supfc > inf u : x 2 fu > cgtg if x 2

[
c>inf u

fu > cgt

inf u if x =2
[

c>inf u

fu > cgt
;

8>><>>: x 2 Rn;

�2:26�
is called continuous (Steiner) symmetrization of u with respect to y in the case n � 2 and

continuous symmetrization in the case n � 1.

Remark 2.5. It is easy to see that formula (2.26) is equivalent to the following relations

fut > cg � fu > cgt 8c > inf u;

fut � inf ug � Rn n
[

c>inf u

fu > cgt;

fut � �1g �
\

c>inf u

fu > cgt: �2:27�

It was shown in [B2], that u0 � u and u1 � u�. Furthermore, if u is continuous, then for

every t 2 �0;�1� the function ut has a continuous representative which is given by the

formulas (2.26) and (2.27) in pointwise sense and on the right-hand sides of these
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formulas are taken the precise (open) representatives of the corresponding level sets. One

can illustrate the formulas (2.26), (2.27) by continuously rearranging a step function as in

figure 2.

If

u � c0 �
Xm

i�
ci��Mi�; �2:28�

where M1 � � � � � Mm; Mi 2M�Rn�, and c0 2 R; ci > 0; i � 1; . . . ;m, then

ut � c0 �
Xm

i�1

ci��Mt
i�; t 2 �0;�1�: �2:29�

From now on let us agree that if we speak about the continuous symmetrizations of

continuous functions, then we always mean their precise (continuous) representatives.

Remark 2.6. Let us recall some properties of continuous symmetrization that we proved

in [B2] and which we will use from time to time �M;N 2M�Rn�; u; v;w 2 S��Rn�,
t 2 �0;�1��.
(1) Monotonicity (see [B2], Theorem 5):

If u � v; then

ut � vt: �2:30�

Figure 2.
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(2) Cavalieri's principle (see [B2], Theorem 8):Z
Rn

F�u�dx �
Z

Rn

F�ut�dx; �2:31�

if F is Borel measurable and the left-hand side of (2.31) converges.

(3) Continuity with respect to the parameter t: If tm ! t as m! �1, then (see [B2],

Theorem 3)

Mtm ÿ!Mt in measure; �2:32�
and if u is a.e. finite, then (see [B2], Theorem 7)

utm ÿ! ut in measure: �2:33�
(4) Centre-formula (see [B2], Remark 4):

S�Mt� � �S1�M�; . . . ; Snÿ1�M�; eÿtSn�M��: �2:34�
(5) Nonexpansivity in Lp�Rn�, 1 � p � �1, (see [B2], Lemma 3): If u; v 2 Lp�Rn�, then

kut ÿ vtkp � kuÿ vkp: �2:35�
(6) Hardy±Littlewood inequality (see [B2], Lemma 4): If u; v 2 L2�Rn�, thenZ

Rn

utvt dx �
Z

Rn

uv dx: �2:36�

(7) If u is Lipschitz continuous with Lipschitz constant L then ut is Lipschitz continuous,

too, with Lipschitz constant less or equal to L, (see [B2], Theorem 7).

Note that (1), (2), (5) and (6) are common properties of monotone equimeasurable

rearrangements (see [K1, BS]). We mention that the Lipschitz continuity is in fact the

`best' regularity which is preserved under continuous symmetrization. This can be seen

by symmetrizing a function f 2 C1�R� which has more than two monotonicity intervals

(see figure 3). The functions f t and f1 are not differentiable in the marked points.

From now on we will assume that n � 2. Since the continuous Steiner symmetrization

is in fact a `one-dimensional' construction, the results of this work can be transferred to

the simpler case n � 1 with obvious changes.

3. Dirichlet-type inequalities

In this section we prove various inequalities which compare some (weighted) Sobolev

norm of a function u with the same norm of ut. The strategy in the proofs consists in

changing locally the variable of integration from y to u in the functionals. Functions for

which this is possible are characterized by the following:

DEFINITION 3.1 (`Good' functions)

A function u is called good if u is defined on Rn and nonnegative, piecewise smooth with

compact support, if for every x0 2 Rnÿ1 and c > 0 the equation u�x0; y� � c has only a

finite number of solutions y � yk, k � 1; . . . ; l, and if

inffjuy�x�j : x 2 Rn; uy�x� existsg > 0: �3:1�

170 Friedemann Brock



Remark 3.1. (1) Good functions are dense in W
1;p
� �Rn� in the norm of W1;p�Rn� for every

p 2 �1;�1�. This can be seen as follows. C10 �Rn� is dense in W1;p�Rn�. Any C10 -

function can be approximated by piecewise linear functions with compact support. If u is

piecewise linear with support in BR�0�, �R > 0�, then set

"0 :� minfjuy�x�j : x 2 Rn; uy�x� exists and is 6� 0g > 0

and

v�x� :� 1ÿ Rÿ1jyj if jyj < R

0 if jyj � R

(
:

The functions u" :� u� "v are good if 0 < j"j < "0, and u" converges to u in W1;p�Rn�
as " tends to zero. Note that the same argumentation can be found in ([K1], pp. 49)

for good piecewise linear functions in W
1;p
0 �
�, where 
 is a bounded domain. (2)

Let u 2 W
1;1
� �Rn� \ C1

loc�Rn�. Then u is absolutely continuous on almost every line

fx0 � constg (see [EG], p. 164). From this we can infer (compare [C], Appendix 1

and 4) that u is `generically' good, i.e. for almost every pair �x0; c� 2 Rnÿ1 � R�0 the

equation u�x0; y� � c has only a finite number of solutions, and the equation uy�x0; y� � 0

does not have any solution. (3) If u is good and piecewise linear, then the functions

ut, t 2 �0;�1�, are in general not piecewise linear, as one can see from simple

Figure 3.
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examples of functions which are not quasiconcave in the direction y. But there holds the

following:

Lemma 3.1. Let u be good. Then the functions ut, t 2 �0;�1�, are good, too.

Proof. The set

K :�f�x0; u� 2 Rnÿ1�R� : 9�x0; y� 2 supp u; such that u � u�x0; y�g �3:2�
is compact. Furthermore, it is easy to see that for a.e. point �x00; u0� 2 K there exists an

open neighbourhood V � K such that the equation u � u�x0; y� has exactly 2m,

�m � m�V��, solutions y � yk�x0; u� in V , yk 2 C1�V�, k � 1; . . . ; 2m, and such that

y1 < � � � < y2m. Thus u can be represented in V by local inverse functions y � yk�x0; u�,
and we have that

uy�x0; yk� � @yk

@u

� �ÿ1 > 0 if k is odd

< 0 if k is even

(
;

uxi
�x0; yk� � ÿ @yk

@xi

@yk

@u

� �ÿ1

; i � 1; . . . ; nÿ 1; �k � 1; . . . ; 2m�: �3:3�

Our aim is to derive analogous representations for ut, t 2 �0;�1�. To this end we restrict

our considerations to one of the above open sets V . First observe that for each �x0; u� 2 V

the equation u � ut�x0; y� has at most 2m solutions y, by the proof of Theorem 2.1. Let V 0

be an open set with V 0 �� V . Then we see from Definitions 2.1±2.3 that for small t, ut

can be represented in V 0 by smooth inverse functions y � yt
k�x0; u� through the formulas

yt
2kÿ1 �

1

2
�y2kÿ1 ÿ y2k � eÿt�y2kÿ1 � y2k��;

yt
2k �

1

2
�y2k ÿ y2kÿ1 � eÿt�y2kÿ1 � y2k��; �3:4�

and there hold the following identities,

ut
y�x0; yt

k� �
@yt

k

@u

� �ÿ1 > 0 if k is odd

< 0 if k is even

(
;

ut
xi
�x0; yt

k� � ÿ
@yt

k

@xi

@yt
k

@u

� �ÿ1

; i � 1; . . . ; nÿ 1; �k � 1; . . . ; 2m�: �3:5�

Suppose that t1�� t1�x0; u�� is the first value of t, such that some of the intervals

�yt
2kÿ1�x0; u�; yt

2k�x0; u��, k � 1; . . . ;m, coalesce. Note that t1�x0; u� varies continuously in

V 0. For simplicity in notation let us assume that we have yt1
2k � yt1

2k�1, k � 1; . . . ; l,
�l � mÿ 1�, at some point �x00; u0� 2 V 0. Following the proof of Theorem 2.1, we see that

there is some (small) neighbourhood V 00 of �x00; u0� and some number t2 > supft1�x0; u�:
�x0; u� 2 V 00g, such that the functions yt

1�x0; u� and yt
2l�x0; u�, �t � t1�x0; u��, find `continua-

tions' �t
i�x0; u�, for t1�x0; u� < t < t2, and such that u � ut�x0; �t

i�, i � 1; 2, in V 00. From the

equimeasurability we have that

�t
2 ÿ �t

1 �
Xl

k�1

�y2kÿ1 ÿ y2k� � yt1
2l ÿ yt1

1 : �3:6�
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Since the set [l
k�1�y2kÿ1; y2k� is continuously symmetrized independently from the other

intervals for t < t2, we may apply the centre formula (2.34) onto this set. Together with

the semigroup property this yields

�t
1 � �t

2

2
� etÿt1

Pl
k�1

1
2
�yt1

2k � yt1
2kÿ1�Pl

k�1�yt1
2k ÿ yt1

2kÿ1�
: �3:7�

After a differentiation with respect to xi, i � 1; . . . ; nÿ 1, we infer from (3.6), (3.7) that

�t
2; xi
ÿ �t

1; xi
�
Xl

k�1

�yt1
2k; xi
ÿ yt1

2kÿ1; xi
�;

�t
2; xi
� �t

1; xi
� 2

Pl
k�1�yt1

2kyt1
2k; xi
ÿ yt1

2kÿ1yt1
2kÿ1; xi

�Pl
k�1�yt1

2k ÿ yt1
2kÿ1�

ÿ
Pl

k�1��yt1
2k�2 ÿ �yt1

2kÿ1�2�
�Pl

k�1�yt1
2k ÿ yt1

2kÿ1��2
Xl

k�1

�yt1
2k;xi
ÿ yt1

2kÿ1; xi
�: �3:8�

In view of the equalities

yt1
2kÿ1 � yt1

2k; k � 1; . . . ; l;

yt1
2l � �t1

2 ; yt1
1 � �t1

1 ; �3:9�
we obtain from (3.8)

�t1
1; xi
� ÿ 1

yt1
2l ÿ yt1

1

X2l

j�1

�ÿ1�jyt1
j; xi
�yt1

2l ÿ yt1
j �;

�t1
2; xi
� 1

yt1
2l ÿ yt1

1

X2l

j�1

�ÿ1�jyt1
j; xi
�yt1

j ÿ yt1
1 �: �3:10�

Analogously we compute the derivatives with respect to u as

j�t1
1;uj �

1

yt1
2l ÿ yt1

1

X2l

j�1

jyt1
j;uj�yt1

2l ÿ yt1
1 �;

j�t1
2;uj �

1

yt1
2l ÿ yt1

1

X2l

j�1

jyt1
j;uj�yt1

j ÿ yt1
1 �; �3:11�

and we have �t1
2;u < 0 < �t1

1;u. We will not specify formulas for the `future' of the

remaining intervals �yt1
2kÿ1�x0; u�; yt1

2k�x0; u��, k � l� 1; . . . ;m, for t 2 �t1�x0; u�; t2�. Some

of these intervals might be computed henceforth according to (3.4) while others coalesce

during that time. This leads to analogous computations.

By means of the semigroup property we can repeat these considerations step by step

for every t 2 �0;�1� and for almost every points of K. From the formulas (3.4), (3.5),

(3.10) and (3.11) we see that ut is piecewise smooth and

inffjut
y�x�j : x 2 Rn; ut

y�x� existsg > 0; t 2 �0;�1�:

The lemma is proved. &
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Theorem 3.1. Let be u a good function, G a Young function and a 2 C�R� nonnegative,

even and convex. Then for every t 2 �0;�1�Z
Rn

G a2�y� @u

@y

� �2

�
Xnÿ1

i�1

@u

@xi

� �2
( )1=2

0@ 1Adx

�
Z

Rn

G a2�y� @ut

@y

� �2

�
Xnÿ1

i�1

@ut

@xi

� �2
( )1=2

0@ 1Adx: �3:12�

Proof. We use the notations of the previous proof. We may change locally the variable of

integration in (3.12) from �x0; y� to �x0; u�. Then the integrals on the left and right-hand

side of (3.12) become
R

K
I�x0; u�dx0du and

R
K

It�x0; u�dx0du, respectively, where K is given

by (3.2) and I and It are nonnegative functions which will be specified below. Then, to

prove (3.12), it is sufficient to show that

I�x0; u� � It�x0; u� for a:e: �x0; u� 2 K: �3:13�
Using the notations of the previous proof, we compute

I�x00; u0� �
X2m

k�1

G
@yk

@u

���� ����� �ÿ1

a2�yk� �
Xnÿ1

i�1

@yk

@xi

� �( )1=2
0@ 1A @yk

@u

���� ����: �3:14�

Similarly, we have that

It�x00; u0��
X2m

k�1

G
@yt

k

@u

���� ����� �ÿ1

a2�yt
k��

Xnÿ1

i�1

@yt
k

@xi

� �( )1=2
0@ 1A@yt

k

@u

���� ����; for t2�0; t1�;

�3:15�
where t1 � t1�x00; u0�. Thus, to prove (3.13) at �x00; u0� for t 2 �0; t1�, it suffices to show that

'k�t� :�
X2k

l�2kÿ1

G
@yt

l

@u

���� ����� �ÿ1

a2�yt
l� �

Xnÿ1

i�1

@yt
l

@xi

� �2
( )1=2

0@ 1A @yt
l

@u

���� ����
is nondecreasing for t 2 �0; t1�; �k � 1; . . . m�: �3:16�

To see this, we formally extend the definition (3.4) of the functions yt
k, �k � 1; . . . ; 2m�,

for all t 2 �0;�1�. We introduce the new parameter � :� �1=2��1ÿ eÿt�, and set

 k��� :� 'k�t�. By setting in addition

 k�1ÿ �� :�  k��� 8� 2 �0; �1=2��;
a simple calculation shows that  k���, � 2 �0; 1�, is convex. This proves (3.16).

Next assume that at the moment t � t1 the intervals �yt
2kÿ1; y

t
2k�, k � 1; . . . ; l, �l � m�,

coalesce and are `continued' in a single interval ��t
1; �

t
2� according to the formulas (3.6),

(3.7). Note that It�x00; u0� is not defined at t � t1. Setting yk :� yt1
k , k � 1; . . . ; 2l, and

�k :� �t1
k , k � 1; 2, we want to show that

X2

k�1

G �j�k;uj�ÿ1
a2��k� �

Xnÿ1

i�1

��k; xi
�2

( )1=2
0@ 1Aj�k;uj
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�
X2l

k�1

G �jyk;uj�ÿ1
a2�yk� �

Xnÿ1

i�1

�yk; xi
�2

( )1=2
0@ 1Ajyk;uj: �3:17�

Choosing

�j :� jyj;uj�yj ÿ y1�P2l
j�1 jyj;uj�yj ÿ y1�

; �j :� jyj;uj�y2l ÿ yj�P2l
j�1 jyj;uj�y2l ÿ yj�

and

zj :� a2�yj� �
Xnÿ1

i�1

�yj; xi
�2

( )1=2

�jyj;uj�ÿ1; j � 1; . . . ; 2l;

the right-hand side of (3.17) becomesX2l

j�1

P2l
k�1 jyk;uj�yk ÿ y1�

y2l ÿ y1

�jF�zj� �
P2l

k�1 jyk;uj�y2l ÿ yk�
y2l ÿ y1

�jF�zj�
 !

�: I:

Since G is convex we conclude from this

I�G
X2l

j�1

�jzj

 !P2l
k�1jyk;uj�ykÿy1�

y2l ÿ y1

� G
X2l

j�1

�jzj

 !P2l
k�1jyk;uj�y2lÿyk�

y2l ÿ y1

�: I0:

Furthermore, from the monotonicity and convexity of the function '��1; . . . ; �n� :�
f�2

1 � � � � �2
ng1=2

we deriveX2l

j�1

�jzj �
f�y2l ÿ y1�2a2�y2l� �

Pnÿ1
i�1 �

P2l
j�1�ÿ1� jyj; xi

�yj ÿ y1��2g1=2P2l
k�1 jyk;uj�yk ÿ y1�

and X2l

j�1

�jzj �
f�y2l ÿ y1�2a2�y1� �

Pnÿ1
i�1 �

P2l
j�1�ÿ1�jyj; xi

�y2l ÿ yj�2�2g1=2P2l
k�1 jyk;uj�y2l ÿ yk�

:

Together with the monotonocity of G this yields

I 0 �
P2l

j�1 jyj;uj�yj ÿ y1�
y2l ÿ y1

� G
f�y2l ÿ y1�2a2�y2l� �

Pnÿ1
i�1 �
P2l

j�1�ÿ1�jyj;xi
�yj ÿ y1��2g1=2P2l

j�1 jyj;uj�yj ÿ y1�

 !

�
P2l

j�1 jyj;uj�y2l ÿ yj�
y2l ÿ y1

� G
f�y2l ÿ y1�2a2�y1� �

Pnÿ1
i�1 �

P2l
j�1�ÿ1�jyj;xi

�y2l ÿ yj��2g1=2P2l
j�1 jyj;uj�y2l ÿ yj�

 !
:

But in view of the identities (3.9)±(3.11) this last term is equal to the left-hand side of

(3.17). Now from the inequalities (3.16) and (3.17) we obtain easily that the function

h�t� :� It�x00; u0�, t 2 �0; t2�, does not increase across the value t � t1. Moreover, using

the semigroup property we see that h�t�, t 2 �0;�1�, is well-defined ± with the except of

a finite number of values t ± and nonincreasing.
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By Lemma 3.1 we can argue similarly for a.e. �x0; u� 2 K. This shows (3.13), and the

theorem is proved. &

A slight generalization of the previous Theorem 3.1 is the following:

COROLLARY 3.1

Let the functions G�x0; v; z�, a�x0; y; v�, aij�x0; v�, i; j � 1; . . . ; nÿ 1, be continuous

8�x; v; z� 2 Rn � �R�0 �2. Let G be nonnegative and convex in z with G�x0; v; 0� � 0

8�x0; v� 2 Rnÿ1 � R�0 . Further on let a be positive, even and convex in y, and let the

matrix �aij� be positive definite. Finally let u be a good function. Then for every t 2
�0;�1� we have

Z
Rn

G x0; u; a2u2
y �

Xnÿ1

i;j�1

aijuxi
uxj

( )1=2
0@ 1Adx

�
Z

Rn

G x0; u; ~a2�ut
y�2 �

Xnÿ1

i�1

~aiju
t
xi

ut
xj

( )1=2
0@ 1Adx: �3:18�

(For simplicity we wrote u � u�x�, ut � ut�x�, a � a�x; u�x��, ~a � a�x; ut�x�� and

aij � aij�x0; u�x��, ~aij � aij�x0; ut�x��, i; j � 1; . . . ; nÿ 1, in (3.18).)

Proof. We fix an arbitrary point �x00; u0� 2 Rnÿ1 � R�0 . From the previous proof we see

that it is sufficient to show the statements (3.16) and (3.17) at �x00; u0� ± with the terms

containing partial derivatives in xi, �i � 1; . . . ; nÿ 1�, replaced by some corresponding

quadratic forms. For an appropriate linear mapping x0 7!�0 2 Rnÿ1 we can achieve that the

function v��; y� :� u�x0; y� satisfies

Xnÿ1

i�1

~aij uxi
uxj
�
Xnÿ1

i�1

@v

@�i

� �2

at the point �x00; u0�. Since, by the definition of the continuous symmetrization, vt��0; y� �
ut�x0; y�, �t 2 �0;�1��, (3.16) and (3.17) then follow as before. &

Remark 3.2. (1) Integrals as in (3.12) and (3.18) with G � G�z� � z2 and a some power

of y appear in variational problems for two-dimensional or axisymmetric flows (see

[F, B1]). (2) In the case t � �1 (i.e. for Steiner symmetrization) the inequality (3.18) can

be proved in a simpler manner (see [B5]). Equation (3.18) seems to be the most general

Dirichlet-type inequality for Steiner symmetrization which appeared in the literature.

Note that some similar inequalities with a radial weight function in the integrand are well

known for the so-called starshaped rearrangements (see [BM, K1, 3, 4 and M]).

If a � ai � 1 and G�z� � zp for some p 2 �1;�1� in (3.18) then we are led to norm

inequalities in W1;p. For the proof we further need the following nice equivalence

principle for convex inequalities which was shown in ([ALT], Corollary 3.1).

Lemma 3.2. Let u; v 2 S��Rn�. Then the following two properties (i) and (ii) are

equivalent to each other,
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�i�
Z

Rn

G�u�dx �
Z

Rn

G�v�dx; for every Young function G:

�ii�
Z

M

u dx � sup

Z
N

v dx : jNj � jMj; N 2M�Rn�
� �

;

for every set M 2 M�Rn�:

Theorem 3.2. Let u 2 W1;p�Rn� \ S��Rn� for some p 2 �1;�1�. Then for every t 2
�0;�1� we have ut 2 W1;p�Rn� \ S��Rn� and

krukp � krutkp; �3:19�
@u

@xi





 




p

� @ut

@xi





 




p

; i � 1; . . . ; n: �3:20�

Proof. First observe that if p 2 �1;�1� and if u is good then (3.19) and (3.20) follow

from Corollary 3.1. In the general case we will use various approximation arguments:

(1) Let 1 < p < �1 and u 2 W
1;p
� �Rn�. We choose a sequence of good functions

converging to u in W1;p�Rn�. From the equimeasurability it follows that ut; ut
m 2 Lp�Rn�,

m � 1; 2; . . . ; and in view of the nonexpansivity, (Remark 2.6 (5)), we infer that ut
mÿ!ut

in Lp�Rn�. Further we have that krut
mkp � krumkp by (3.19), i.e. the functions ut

m are

uniformly bounded. Hence there is a subsequence �um0 �t which converges weakly in

W1;p�Rn� to some v 2 W1;p�Rn�. This means that we have for every function ' 2 C10 �Rn�
and for every i 2 f1; . . . ; ng

ÿ
Z

Rn

ut @'

@xi

dx ÿÿ
Z

Rn

�um0 �t @'
@xi

dx �
Z

Rn

'
@�um0 �t
@xi

dxÿ!
Z

Rn

'
@v

@xi

dx

as m0 ! �1;
from which we can identify ut as a function in W1;p�Rn� with rut � rv. Since the norm

in W1;p�Rn� is weakly lower semicontinuous, we infer that

krutkp � lim
m0!1

inf kr�um0 �tkp � lim
m0!1

krum0 kp � krukp: �3:21�

Further we have ut
xi
2 Lp�Rn�, i � 1; . . . ; n. Therefore an estimate for the partial

derivatives ut
xi

analogous to (3.21) leads to the inequalities (3.20).

(Note that similar arguments can be found in ([K1], p. 23) and ([BZ], p. 159).)

(2) Let u 2 W1;1�Rn� \ S��Rn�. We introduce the cut-off functions uc, �c � 0�, by

uc :� �uÿ c�� � maxfuÿ c; 0g: �3:22�
Then

jfuc > 0gj < �1 8c > inf u: �3:23�
It follows that uc 2 W1;p�Rn� for every p 2 �1;�1�, and in view of �uc�t � �ut�c we infer

that

kr�ut�ckp � kruckp 8p 2 �1;�1�: �3:24�
Because of (3.23) we can pass to the limit p! �1 in (3.24) to derive

ess supfjr�ut�c�x� : x 2 Rng � ess supfjruc�x� : x 2 Rng 8c > inf u:
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Choosing c! 0 and by taking into account that ru � 0 a.e. on fu � inf ug and rut � 0

a.e. on fut � inf ug, (3.19) follows in the case p � �1. Analogous considerations lead to

the inequalities (3.20) in the case p � �1.

(3) Let u 2 W
1;1
0 �Rn�. We choose a sequence of Lipschitz continuous functions with

compact support um converging to u in W1;1�Rn�. Then we have that ut
mÿ!ut in L1�Rn�.

Furthermore, since k@ut
m=@xik1 � k@um=@xik1 by (3.20), we see that the functions

�@ut
m�=�@xi� are uniformly bounded in L1�Rn�, i � 1; . . . ; n, and for every Young function

G we have Z
Rn

G
@ut

m�x�
@xi

���� ����� �
dx �

Z
Rn

G
@um�x�
@xi

���� ����� �
dx;

m � 1; 2; . . . ; i � 1; . . . ; n: �3:25�
From Lemma 3.2 we infer that for every set M 2 M�Rn�Z

M

@ut
m�x�
@xi

���� ����dx � sup

Z
N

@um�x�
@xi

���� ����dx : jNj � jMj; N 2M�Rn�
� �

;

m � 1; 2; . . . ; i � 1; . . . ; n: �3:26�
Now assume for a moment that for every i 2 f1; . . . ; ng

sup

Z
Ek

@ut
m�x�
@xi

���� ����dx : m 2 N

� �
ÿ! 0 as k ! �1; �3:27�

for every sequence fEkg � M�Rn� with jEkjÿ! 0.

From a well known weak compactness principle of sequences in L1�Rn�, (see e.g. [Alt],

p. 199), we infer that there are subsequences �@ut
m0 �=�@xi� which converge weakly in

L1�Rn� to functions vi 2 L1�Rn�, respectively, i � 1; . . . ; n. By proceeding as in part (1)

of the proof one obtains then (3.19) and (3.20). Thus it remains to show (3.27).

Suppose that (3.27) is not true for some i 2 f1; . . . ; ng. In view of (3.26) there is a

number � > 0 and sequences fmkg � N and fEkg � M�Rn� such that jEkj ÿ! 0 as k!
�1 and

sup

Z
N

@umk
�x�

@xi

���� ����dx : jNj � jEkj;N 2M�Rn�
� �

� �: �3:28�

Therefore we can find a sequence fNkg � M�Rn�with jNkj � jEkj, k � 1; 2; . . . ; such thatZ
Nk

@umk
�x�

@xi

���� ����dx � �

2
: �3:29�

There are possible two cases:

(a) The sequence fmkg is unbounded. We choose a subsequence fk0g with mk0 ! �1 as

k0 ! �1. From (3.29) we have thatZ
N 0

k

@u�x�
@xi

���� ����dx � �

4
for k0 large enough;

which is impossible since u 2 W1;1�Rn�.
(b) The sequence fmkg is bounded. Then by passing to a subsequence fk0g with mk0 � m

�� const� in (3.29) we derive a contradiction to um 2 W1;1�Rn�. &
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Remark 3.3. There exists a simple alternative proof of Theorem 3.2 by means of an

approximation via convolution-type inequalities (see [B4]). Note that this method of proof

was developped by Baernstein [Ba] for various types of rearrangements. Unfortunately,

this idea seems not applicable in the case of the general inequalities (3.12) and (3.18).

It is easy to obtain an analogue of Theorem 3.2 for functions in the Sobolev spaces

W
1;p
0��
�, (
 open).

COROLLARY 3.2

Let 
 be an open set and let u 2 W
1;p
0� �
� for some p 2 �1;�1�. Then for every

t 2 �0;�1� we have ut 2 W
1;p
0� �
t� and (3.19), (3.20) hold.

Proof. Equations (3.19) and (3.20) follow from Theorem 3.2 by extending u and ut by

zero outside 
 and 
t, respectively. Thus it remains to show that ut 2 W
1;p
0 �
t�. If

u 2 C
0;1
0��
� it follows by Remark 2.6 (8) that ut 2 C

0;1
0��
t�. In the general case we

choose a sequence um of functions in C
0;1
0��
� which converges to u in W

1;p
0 �
�. Then

�um�t ! ut in Lp�
t�. By (3.19) the functions �um�t are equibounded in W
1;p
0 �
t�. There-

fore there is a function v 2 W
1;p
0 �
t� and a subsequence �um0 �t which converges to v

weakly in W
1;p
0 �
t�. This means that for every ' 2 C10 �
t� and for every i 2 f1; . . . ; ngZ


t

'vxi
dx ÿ

Z

t

'
@�um0 �t
@xi

dx � ÿ
Z


t

'xi
�um0 �t dxÿ!ÿ

Z

t

'xi
utdx

as m0 ! �1;
that is v � ut. The corollary is proved. &

The following property is useful for approximations of the symmetrized functions. It

can be proved by arguing as in part (1) of the proof of Theorem 3.2.

Lemma 3.3. Let u; um 2 W
1;p
� �Rn�, m � 1; 2; . . . ; for some p 2 �1;�1� and

umÿ! u in W1;p�Rn� as m! �1: �3:30�
Then for every t 2 �0;�1�

ut
m * ut weakly in W1;p�Rn� as m! �1: �3:31�

Open problem 3.1. Let u; um be as in Lemma 3.3. Is it then true that for every t 2 �0;�1�
ut

mÿ!ut in W1;p�Rn� as m! �1 ? �3:32�
This conjecture was shown in the case t � �1 (i.e. for the Steiner symmetrization) by

Burchard [Bu] (see also [C] for an earlier proof in the particular case that n � 1 and

t � �1).

It is worth to mention that, if n � 2, then a conclusion analogous to (3.32) does not

hold for the Schwarz symmetrizations of u; um, m � 1; 2; . . . , (see [AL]).

It is possible to extend Corollary 3.1 to Sobolev functions.

COROLLARY 3.3

Let 
 be an open set with 
 � 
� and let u 2 W
1;p
0� �
� for some p 2 �1;�1�. Further let

G; a; aij, i; j � 1; . . . ; nÿ 1; be as in Corollary 3.1, and suppose that for some numbers
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C > c > 0

c � a�x; v� � C; c
Xnÿ1

i�1

�2
i �

Xnÿ1

i;j�1

aij�x0; v��i�j � C
Xnÿ1

i�1

�2
i

8��1; . . . ; �nÿ1� 2 Rnÿ1 and 8�x; v; z� 2 Rn � �R�0 �2: �3:33�
Finally suppose that

G�x0; v; z� � Czp if j
j � �1
C�z� zp� if j
j < �1

(
: �3:34�

Then (3.18) holds.

Proof. We choose a sequence of good functions fumg such that

umÿ!u in W1;p�
� and

umÿ!u

rumÿ!ru
a:e: in 
: �3:35�

Let J�u� denote the integral functional on the left-hand side of (3.18). By (3.33) we have

J�um� �
Ckrumkp

p if j
j � �1
C�krumk1 � krumkp

p� if j
j < �1

(
; �3:36�

and the same inequality holds for um replaced by u. In view of (3.34), (3.35) we can apply

Lebesgue's convergence theorem to infer that limm!�1 J�um� � J�u�.
Let t 2 �0;�1�. Since the functions �um�t are equibounded in W1;p�
� we can choose

a subsequence f�um0 �tg which converges to ut weakly in W1;p�
�. In view of the weak

lower semicontinuity of the functional J this finally gives

J�ut� � lim inf
m0!�1

J��um0 �t� � lim
m0!�1

J�um0 � � J�u�: &

Remark 3.4. (1) The inequalities (3.19) find their analogy in inequalities for the norm in

the space of functions with bounded variation in Rn (see [B4]). A consequence of this is

that the perimeter of Caccioppoli sets decreases under continuous symmetrization. (2)

With regard to some `nice' properties of the continuous symmetrization ± and in

particular to the basic fact that the Lipschitz continuity of functions is preserved under

continuous rearrangement ± our restriction to the Sobolev spaces W1;p�Rn� is not

forcible. The general Dirichlet-type inequality (3.18), for instance, is also satisfied for

functions lying in a suitable Orlicz space.

4. Continuity in t

In this section we are interested in continuity properties of the mapping

t 7ÿ! ut

in the spaces Lp�Rn�; W1;p�Rn�; 1 � p < �1, and BV�Rn�.
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Lemma 4.1. Let u 2 L
p
��Rn� for some p 2 �1;�1� and let ftmg be a nonnegative

sequence converging to some number t 2 �0;�1�: Then

utmÿ!ut in Lp�Rn� as m! �1: �4:1�

Proof. The proof is in two steps:

(1) Let u be a step function of the following form,

u � "
Xk

i�1

��Mi�; �4:2�

where M1 � � � � � Mk, Mi 2M�Rn�, i � 1; . . . ; k; " > 0.

Then

ut � "
Xk

i�1

��Mt
i�; utm � "

Xk

i�1

��Mtm
i �; m � 1; 2; . . . :

In view of (2.14) we have

kutm ÿ utkp � "
Xk

i�1

���Mtm
i � ÿ ��Mt

i��













p

� "
Xk

i�1

jMtm
i �Mt

i jÿ!0 as m! �1:

(2) Let u 2 L
p
��Rn� and " > 0. We choose a sequence of step functions fukg which

converges to u in Lp�Rn�. We may take k large enough such that kuk ÿ ukp < "=3 and

then m large enough to ensure that kujtmÿtj
k ÿ ukkp < "=3. In view of the nonexpansivity

(2.35) we derive

kutm ÿ utkp � kutm ÿ utm
k kp � kutm

k ÿ ut
kkp � kut

k ÿ utkp

� 2kuk ÿ ukp � kujtmÿtj
k ÿ ukkp < ";

and the assertion follows. &

Lemma 4.2. Let u 2 Lp�Rn� and u 6� u�. Then there are constants c > 0 and t0 > 0 such

that:

kut ÿ ukp � ct 8t 2 �0; t0�: �4:3�

Proof. By Lemma 4.1 we can find numbers t0 > 0 and � > 0 such that kut ÿ ukp � �
8t 2 �t0;�1�. If t 2 �0; t0� we find some number N 2 N satisfying t0 � Nt � 2t0. Then

by the nonexpansivity we derive

kuNt ÿ ukp �
XNÿ1

k�0

ku�k�1�t ÿ uktkp � Nkut ÿ ukp;

which means that

kut ÿ ukp �
�

N
� �

2t0
t: &
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Theorem 4.1. Continuity from the right of the mapping t 7ÿ! ut: Let tm & 0 and

u 2 W
1;p
� �Rn� for some p 2 �1;�1�. Then

utm ÿ! u in W1;p�Rn� as m! �1: �4:4�

Proof. Let i 2 f1; . . . ; ng. We split into two cases:

(1) p > 1. From Theorem 3.2 we infer that the sequence kutm
xi
kp is monotonically increas-

ing and

lim
m!1ku

tm
xi
kp � kuxi

kp: �4:5�
Furthermore, the sequence futmg converges to u in Lp�Rn� by Lemma 4.1. It follows that

for every ' 2 C10 �Rn�

ÿ
Z

Rn

'
@utm

@xi

dx �
Z

Rn

utm'xi
dxÿ!

Z
Rn

u'xi
dx � ÿ

Z
Rn

'uxi
dx;

that is

@utm

@xi

*
@u

@xi

weakly in Lp�Rn� as m! �1: �4:6�

Since the spaces Lp�Rn� are uniformly convex if 1 < p < �1, (4.5) and (4.6) imply that

@utm

@xi

ÿ! @u

@xi

strongly in Lp�Rn�; i � 1; . . . ; n:

(2) p � 1. As in part (1) we can derive (4.5) and (4.6). We set vm :� �utm�xi
and v :� �ut�xi

.

Since the function G�z� :� ������������
1� z2
p ÿ 1 is continuous and convex with G�z� � z we

conclude from Corollary 3.4 and the weak lower semi-continuity of the integral that

lim
m!1

Z
Rn

�
��������������
1� v2

m

q
ÿ 1�dx �

Z
Rn

�
�������������
1� v2

p
ÿ 1�dx:

Further we obtain by Taylor's theoremZ
Rn

�
��������������
1� v2

m

q
ÿ 1�dx �

Z
Rn

�
�������������
1� v2

p
ÿ 1�dx�

Z
Rn

v�������������
1� v2
p �vm ÿ v�dx

� 1

2

Z
Rn

�vm ÿ v�2
�1�maxfv2; v2

mg�3=2
dx:

By passing to the limit m! �1 this leads to

lim
m!1

Z
Rn

�vm ÿ v�2
�1�maxfv2; v2

mg�3=2
dx � 0:

In particular this means that

lim
m!1

Z
fjvmj;jvj�kg

jvm ÿ vjdx � 0 8k > 0: �4:7�

Since vm * v weakly in Lp�Rn� we have also

lim
k!�1

Z
fjvmj>kg

jvmjdx � 0 uniformly 8m 2 N: �4:8�
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Now the assertion follows easily from (4.7), (4.8) and from the inequalities

kvm ÿ vk1 �
Z
fjvmj; jvj�kg

jvm ÿ vjdx� 2

Z
fjvmj>kg

jvmjdx� 2

Z
fjvj>kg

jvjdx

8k > 0: &

Remark 4.1. Simple examples of piecewise linear functions show that Theorem 4.1 does

not hold in the case p � �1.

Open problem 4.1. It would be interesting to find out whether the mapping

t 7ÿ!ut

is also continuous from the left in W
1;p
� �Rn�, 1 � p < �1.

Next we want to estimate kut ÿ ukp from above for functions in Sobolev spaces.

Lemma 4.3. Let u be a good function. Then the limit function

U�x� :� lim
t!0

1

t
�ut�x� ÿ u�x�� �4:9�

exists a.e. Moreover if u is differentiable in �x0; yi�, i � 1; 2, and

y1 < y2; u�x0; y1� � u�x0; y2� < u�x0; z� 8z 2 �y1; y2�; �4:10�
then

U�x0; yi� � y1 � y2

2
uy�x0; yi�; i � 1; 2: �4:11�

Proof. For almost every x1 � �x0; y1� with uy�x1� > 0 we can find a point x2 � �x0; y2�
such that uy�x2� < 0 and such that (4.10) is satisfied. We fix two points x1 and x2 with

these properties. Let yi � yi�x0; u� be the local inverse function of u in the neighborhood

of xi; i � 1; 2, respectively. Then for small enough t > 0, the function ut can be

represented by corresponding local inverse functions yt
i � yt

i�x0; u�; i � 1; 2, which are

given by the formulas (2.10). In other words, we have for small t > 0,

ut�x0; yt
i�x0; u�� � u�x0; yi�; i � 1; 2:

Differentiating this we obtain, using (2.10),

@ut�x0; yi�
@t

����
t�0

� ÿ @ut�x0; yi�
@y

� @yt
i

@t

����
t�0

� y1 � y2

2
uy�x0; yi�; i � 1; 2:

Reversely, for almost every x2 � �x0; y2� with uy�x2� < 0 we can find a point x1 � �x0; y1�
such that uy�x1� > 0 and such that (4.10) is satisfied, and we conclude as before. &

Theorem 4.2. Let u 2 W
1;p
0� �BR� for some p 2 �1;�1� and R > 0. Then

kut ÿ ukp � tRkuykp 8t 2 �0;�1�: �4:12�

Proof. Let u be Lipschitz continuous and let x0 � �x00; y0� 2 BR. We set

u1�y� :� maxf0; u�x0� ÿ kuyk1jyÿ y0jg and

u2�y� :� maxf0; minfu�x0� � kuyk1jyÿ y0j; kuyk1�Rÿ jyj�gg 8y 2 R:
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Clearly we have u1�y�� u�x0�� u2�y� and u1�y�� u�x00; y�� u2�y� 8y 2 R. Let ut
i denote

the (one-dimensional !) continuous symmetrization of the function ui; i � 1; 2, respec-

tively. We obtain by monotonicity

ut
1�y� � u�x0� � ut

2�y� and ut
1�y� � ut�x00; y� � ut

2�y� 8y 2 R: �4:13�
Furthermore, a simple computation shows that

maxfu�x0� ÿ ut
1�y0�; ut

2�y0� ÿ u�x0�g � tRkuyk1:
Together with (4.13) this yields jut�x0� ÿ u�x0�j � tRkuyk1, which proves (4.12) in the

case p � �1.

Next let 1 � p < �1. First assume that u is a good function. From (4.11) we obtain

jU�x�j � Rjuy�x�j for a.e. x 2 BR. After an integration over BR this yields

kUkp � Rkuykp: �4:14�
The functions �1=t��ut ÿ u� are equibounded in L1�BR� by (4.12) and converge to U a.e.

in BR. By applying Lebesgue's convergence theorem we infer that

ut ÿ u

t
ÿ!U in Lp�BR� as t! 0: �4:15�

Further we derive from the nonexpansivity

kut ÿ ukp �
XNÿ1

k�0

ku�k�1�t=N ÿ ukt=Nkp � Nkut=N ÿ ukp 8N 2 N:

By passing to the limit N ! �1, this yields kut ÿ ukp � tkUkp in view of (4.15). Now

the assertion follows from (4.14).

In the general case we choose a sequence fumg of good functions converging to u in

W1;p�BR� and compute

kut ÿ ukp� tRk�um�ykp�kum ÿ ukp�kut
m ÿ utkpÿ! tRkuykp as m! �1:

The theorem is proved. &

Now we prove an analogue of Lemma 4.1 for functions in C�Rn� \ S��Rn�. Note that

Lemma 4.5 below generalizes a part of Theorem 7 in [B2].

Lemma 4.4. Let u 2 C�Rn� \ S��Rn� and t; ftmg as in Lemma 4:1. Then

kutm ÿ utk1ÿ!0 as m! �1: �4:16�

Proof. If u 2 C0;1
0��BR� for some R > 0, we obtain from Theorem 4.2 and (4.12) the

estimate kutm ÿ utk1 � R jtm ÿ tjkuyk1. In the general case let " > 0. We choose a

nonnegative Lipschitz function v with compact support such that kuÿ vk1 < "=3. By

setting R :� diam (supp v) we find some m0 2 N such that jtm ÿ tj < "�3Rkvyk1�ÿ1

8m � m0. By the nonexpansivity we have for every m � m0

kutm ÿ utk1 � kutm ÿ vtmk1 � kvtm ÿ vtk1 � kvt ÿ utk1
� 2kuÿ vk1 � kvtm ÿ vtk1 < ":

The lemma is proved. &
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Formula (4.11) shows that the difference jut�x� ÿ u�x�j is proportional to jxj. Therefore

it is not easy to derive estimates like Theorem 4.2 for functions which do not have

bounded support. However this is possible if u satisfies some decaying properties near

infinity. We study a typical situation.

Theorem 4.3. Let u 2 W1;p�Rn� \ S��Rn� for some p 2 �1;�1�. Let ' : R�ÿ!R� be

continuous and decreasing, and suppose that ' satisfiesZ �1
0

r�n=p�ÿ1'�r�dr < �1: �4:17�

Further suppose that u satisfies �� 2 �0; 1�;R; d > 0�
u�x� � '�R=�� if jxj � R �4:18�

and

'�jxj=�� � u�x� � '�jxj�
jru�x�j � djxjÿ1'�jxj�

�
if jxj � R: �4:19�

Then there is some constant C > 0, depending only on ', �, R, d and kuykp, such that

kut ÿ ukp � Ct 8t 2 �0;�1�: �4:20�
Furthermore, (4:18) and the first inequality in (4.19) remain valid for u replaced by ut for

every t 2 �0;�1�.

Proof. Let t 2 �0;�1�. The idea of the proof consists in combining the formulas (4.12)

and (4.19) with a `layer cake' argument.

We introduce the functions

u0 :� maxfuÿ '�R�; 0g and

ui :�
'�2iÿ1R� ÿ '�2iR� if u > '�2iÿ1R�
uÿ '�2iR� if '�2iR� < u � '�2iÿ1R�
0 if u � '�2iR�

;

8>><>>: i � 1; 2; . . . :

We have

u �
X�1
i�0

ui; �4:21�

and in view of Definition 2.4

ut �
X�1
i�0

�ui�t: �4:22�

From the assumptions we see that supp u0 � BR. By applying Theorem 4.2 this leads to

k�u0�t ÿ u0kp � tR
@u0

@y





 




p

� tRkuykp: �4:23�

Further, if i 2 N, we see from (4.19) that supp ui � B2iR and rui�x� � 0 in B2iÿ1�R. By

using (4.12) and (4.18) again we obtain
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k�ui�t ÿ uikp � t 2iR
@ui

@y





 




p

� t 2iRkruik1jsuppjruijj1=p

� t 2iRd�2iÿ1�R�ÿ1'�2iÿ1�R��!n�1=p��2iR�n ÿ �2iÿ1�R�n�1=p

� t �!n�1=p
d�ÿ1�2iR�n=p'�2iÿ1�R� � tCi: �4:24�

In view of (4.17) we derive easilyX�1
i�1

Ci < �1: �4:25�

Finally, by using (4.21)±(4.25) we obtain

kut ÿ ukp �
X�1
i�0

k�ui�t ÿ uikp � t Rkuykp �
X�1
i�1

Ci

 !
� tC;

and (4.20) follows. Now set

'1�x� :�
'�jxj=�� if jxj > R

'�R=�� if jxj � R

(
and

'2�x� :�
'�jxj� if jxj > R

�1 if jxj � R

(
:

We have '1 � u � '2, by (4.18), (4.19), and clearly 'i � �'i�?, i � 1; 2. By the mono-

tonicity of continuous symmetrization this means that '1 � �'1�t � ut � �'2�t � '2

8t 2 �0;�1�, which proves the second assertion of the lemma. &

Remark 4.2. It is easy to verify that the function u in the cases (1) and (2) below satisfies

the assumptions of Theorem 4.4 �R > 1; �; c1; c2; c3; 
; � > 0; �; � 2 R�.
(1) u 2 W

1;p
� �Rn� for some p 2 �1;�1� and u satisfies

u�x� � � if jxj � R �4:26�
and one of the following conditions (i) or (ii)

�i� 
 > �n=p� �4:27�
and

c1jxjÿ
�log jxj�ÿ� � u�x� � c2jxjÿ
�log jxj�ÿ�

jru�x�j � c3jxjÿ
ÿ1�log jxj��ÿ�
)

if jxj � R;

�ii� c1eÿ�jxjjxj� � u�x� � c2eÿ�jxjjxj�

jru�x�j � c3eÿ�jxjjxj�
)

if jxj � R: �4:28�

(2) u 2 W1;1�Rn� \ S��Rn�, � > 0 and u satisfies (4.26) and

�log�c1jxj��ÿ� � u�x� � �log�c2jxj��ÿ�

jru�x�j � c3jxjÿ1�log�c2jxj��ÿ�ÿ1

)
if jxj � R: �4:29�
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5. More estimates

In this section we intend to show estimates of the form

lim
t&0

inf
1

t

Z



f �x; u��ut ÿ u�dx � 0; u 2 W
1;p
� �
�; �5:1�

for suitable functions f and domains 
 in Rn. At this stage it is worth to sketch a proof of

(5.1) in a special case.

Let f � f �u� be continuous and F�u� � R u

0
f �v�dv, and let 
 be a bounded domain with


 � 
�. The equimeasurability of u and ut yields
R

F�u� � R F�ut�. Furthermore,

f �u� �utÿu� represents the first summand in the (formal) Taylor expansion of the difference

F�ut� ÿ F�u� into powers of �ut ÿ u�. Heuristically this means that
R

f �u��ut ÿ u� is small

in kut ÿ ukp. Applying Lemma 4.2 and Theorem 4.2 this finally givesZ



f �u��ut ÿ u�dx � o�t� as t& 0:

The next Theorem 5.1 can be seen in a certain sense as a generalization of the Hardy±

Littlewood inequality (2.36).

Theorem 5.1. Let 
 be an open set with 
 � 
�. Let u 2 L
p
��Rn� for some p 2 �1;�1�,

and suppose that u vanishes outside 
. Furthermore, let F � F�x; v� measurable on


� �0; sup u�, continuous in v and satisfies

F�x; 0� � 0 8x 2 
;

jF�x; v�j � A�x�B�x0; v� 8�x; v� 2 
� �0; sup u�; �5:2�
where B�x0; v� is nonnegative, measurable in x0 and nondecreasing and continuous in v, and

A 2 L
1=�1ÿ��
� �
�;B��; u���� 2 L1=��
�

for some � 2 �0; 1�.
Finally, suppose that for every s > 0 the function

's�x; v� :� F�x; v � s� ÿ F�x; v� �5:3�
is symmetrically nonincreasing in y. ThenZ




F�x; u�dx �
Z




F�x; ut�dx: �5:4�

Remark 5.1. If F is differentiable in v, then the condition (5.3) means that �@F=@v��x; v�
is symmetrically nonincreasing in y.

Proof of Theorem 5.1. The proof is in two steps:

(1) First assume that u is a step function of the form (4.2). We computeZ



F�x; u�dx �
Xk

i�1

Z
Mi

�F�x; "i� ÿ F�x; "�iÿ 1���dx and

Z



F�x; ut�dx �
Xk

i�1

Z
Mt

i

�F�x; "i� ÿ F�x; "�iÿ 1���dx: �5:5�
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Note that the integrals on the right-hand sides in (5.5) converge by (5.2). By (5.3) the

functions 'i�x� :� F�x; "i� ÿ F�x; "�iÿ 1�� are symmetrically nonincreasing in y. We

claim that Z
Mi

'i�x�dx �
Z

Mt
i

'i�x�dx; i � 1; . . . ; k: �5:6�

To this end it is sufficient to prove thatZ
Mi�x0�

'i�x0; y�dy �
Z
�Mi�x0��t

'i�x0; y�dy for a:e: x0 2 Rnÿ1;

i � 1; . . . ; k: �5:7�
We fix x0 2 Rnÿ1 and i 2 f1; . . . ; kg such that both integrals in (5.7) converge. Assume

first that '�y� :� 'i�x0; y� is a step function of the form

' � � ÿC �
Xl

j�1

��Nj�
 !

; �5:8�

where Nj 2 M�R�, Nj � N�j , j � 1; . . . ; l, N1 � � � � � Nl, C � 0, � > 0.

By the monotonicity (2.13) we have thatZ
Mi�x0�

'�y�dy � � ÿCjMi�x0�j �
Xl

j�1

jMi�x0� \ Njj
 !

� � ÿCj�Mi�x0��tj �
Xl

j�1

j�Mi�x0��t \ Njj
 !

�
Z
�Mi�x0��t

'�y�dy:

A general ' can be approximated in Lp�R� by step functions of the form (5.8). This

proves (5.7) and thus (5.6) is established. Now in view of (5.5) we obtain (5.4).

(2) Next let u 2 Lp�
�. In view of (5.2) both integrals in (5.4) converge. We can choose

an increasing sequence of step functions fumg of the form (4.2) which converges to u in

Lp�
�. Then we have by (5.2)

jF�x; um�x��j � A�x�B�x0; um�x�� � A�x�B�x0; u�x�� �: f �x�;
jF�x; ut

m�x��j � A�x�B�x0; ut
m�x�� � A�x�B�x0; ut�x�� �: g�x� 8x 2 


and f ; g 2 L1�
�: �5:9�
By Lemma 4.1 we can choose a subsequence fum0 g such that

um0 �x�ÿ!u�x�
ut

m0 �x�ÿ!ut�x� for a:e: x 2 
: �5:10�

In view of (5.9) and (5.10) and since F�x; v� is continuous in v, (5.4) follows by

Lebesgue's convergence theorem. &

Theorem 5.2. Let 
 be an open set with 
 � 
�. Let u 2 L
p
��Rn� for some p 2 �1;�1�

and suppose that u vanishes outside 
 and satisfies (4.20). Furthermore, suppose that
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f � f �x; v� is measurable on 
� �0; sup u�, symmetrically nonincreasing in y and

� pÿ1 � qÿ1 � 1�
j f �x; v�j � a�x�b�x0; v� 8�x; v� 2 
� �0; sup u�; �5:11�

where b�x0; v� is nonnegative, measurable in x0 and nondecreasing and right-continuous

in v, and

a 2 L
q=�1ÿ��
� �
�; b��; u���� 2 Lq=��
�

for some � 2 �0; 1�. Finally, assume that u; f satisfy one of the conditions (i)±(iv):

(i) f �x; v� is nonincreasing in v;

(ii) f �x; v� satisfies a HoÈlder condition in v with exponent � 2 �1ÿ pÿ1; 1�, uniformly for

every x 2 
, and u 2 L�q�
�;
(iii) f �x; v� is continuous in v and bounded;

(iv) f �x; v� � h�x�k�x0; v�, where h 2 L
q=�1ÿ��
� �
�, h is symmetrically nonincreasing in y,

k�x0; v� is nonnegative, measurable in x0 and nondecreasing in v and k��; u���� 2
Lq=��
�.

Then (5.1) holds, and in case (i) we haveZ



f �x; u��ut ÿ u�dx � 0 8t 2 �0;�1�: �5:12�

Proof. We set

F�x; v� :�
Z v

0

f �x;w�dw 8�x; v� 2 
� �0; sup u�: �5:13�

Since

jF�x; v�j � a�x�
Z v

0

b�x0;w�dw � a�x�vb�x0; v� 8�x; v� 2 
� �0; sup u�;

we see that F satisfies the assumptions of Theorem 5.1. Thus we derive

0 �
Z




�F�x; ut� ÿ F�x; u��dx �
Z 1

0

Z



f �x; u� ��ut ÿ u���ut ÿ u�dx d�:

This means thatZ



f �x; u��ut ÿ u�dx �
Z 1

0

Z



�f �x; u� ÿ f �x; u� ��ut ÿ u����ut ÿ u�dx d�

�: I�t�: �5:14�
Note that in view of the assumptions on f the integral I�t� converges. Now in case (i) we

immediately derive (5.12) from (5.14).

Furthermore, we obtain by HoÈlder's inequality and by (4.20)

jI�t�j � kut ÿ ukp

Z 1

0

k f ��; u� ��ut ÿ u�� ÿ f ��; u�kqd�

� Ct

Z 1

0

k f ��; u� ��ut ÿ u�� ÿ f ��; u�kqd�: �5:15�
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In view of (5.14) and (5.15) it suffices to prove thatZ 1

0

k f ��; u� ��ut ÿ u�� ÿ f ��; u�kqd�ÿ! 0 as t! 0: �5:16�

In the case (ii) we obtain

k f ��; u� ��ut ÿ u�� ÿ f ��; u�kq
q � Ckut ÿ uk�q

�q;

and (5.16) follows.

Next consider case (iii), and assume that (5.16) is not true. Then there is a sequence

tm & 0 such thatZ 1

0

k f ��; u� ��utm ÿ u�� ÿ f ��; u�kqd� � � �5:17�

for some � > 0. By passing to a subsequence ftm0 g we can achieve that utm0 �x�ÿ!u�x�
a.e. in 
 as m0 ! �1. This yields

f �x; u�x� � ��utm0 �x� ÿ u�x���ÿ! f �x; u�x�� a:e: in 
;

as m0 ! �1; � 2 �0; 1�: �5:18�
If 
 is bounded, then by Lebesgue's convergence theorem (5.17) immediately yields a

contradiction. If 
 is unbounded, then we derive by Lebesgue's theoremZ 1

0

k f ��; u� ��utm0 ÿ u�� ÿ f ��; u�kq;�
\BR�d� ÿ! 0 as m0 ! 1 8R > 0:

�5:19�
Furthermore, from the Hardy±Littlewood inequality (2.36) we have for every R > 0

kb��; u����kq=�
q=�;�
\BR� �

Z



b�x0; u�q=��BR
dx �

Z



b�x0; ut�q=��BR
dx

� kb��; ut����kq=�
q=�;�
\BR�; t 2 �0;�1�:

Together with the assumptions (5.11) this yieldsZ 1

0

k f ��; u� ��ut ÿ u�� ÿ f ��; u�kq;�
nBR�d�

� kakq=�1ÿ��;�
nBR��kb��; utm0 ����kq=�;�
nBR� � kb��; u����kp;�
nBR��
� 2kakq=�1ÿ��;�
nBR�kb��; u����kq=�;�
nBR�
ÿ!0 as R!1; uniformly 8m0 2 N: �5:20�

Now (5.20) together with (5.19) contradict to (5.16). Finally, in the case (iv) we have

k��; u���� 2 Lq=��
� and from Definition 2.4 we infer

k��; ut���� � �k��; u�����t:
By using Lemma 4.1 this yieldsZ 1

0

k f ��; u� ��ut ÿ u�� ÿ f �u�kqd�

190 Friedemann Brock



� khkq=�1ÿ��

Z 1

0

kk��; u� ��ut ÿ u�� ÿ k��; u�kq=� d�

� khkq=�1ÿ��k�k��; u��t ÿ k��; u�kq=� ÿ! 0 as t! 0:

The Theorem is proved. &

Remark 5.2. (1) The conditions (5.2) and (5.11) ensure in essence the applicability of

Lebesgue's convergence theorem in the proofs, and we may replace these conditions by

similar other ones. (2) Note that, if u is bounded in Theorem 5.2, then (ii) is a special case

of (iii) by (5.11). Thus the case (ii) is meaningful only for unbounded functions u.

The proof of Theorem 5.2 is based on an estimate for the function u of the form (4.20). If


 � Rn, then such an estimate can be ensured if u 2 W
1;p
� �Rn� and if u has some decaying

properties near infinity (see Theorem 4.4 and Remark 4.2). On the other hand, these

estimates could be rather restrictive for some applications. Fortunately under an additional

(weak) assumption on f �x; v� we can bypass any strong decaying requirement for u.

Lemma 5.1. Let u 2 W
1;p
� �Rn� \ C�Rn� for some p 2 �1;�1�, let u > 0 in Rn and

u�x�ÿ!0 as jxj ! �1: �5:21�
Furthermore, let f together with u satisfy the assumptions of Theorem 5:2 with 
 replaced

by Rn and, in addition, suppose that for some numbers R; � > 0

f �x; v� is nonincreasing in v for 0 < v < � and jxj > R: �5:22�
Then the conclusions of Theorem 5:2 hold.

Proof. We proceed similarly as in the previous proof. First we obtain (5.14) with 
 � Rn.

If f �x; v� is nonincreasing in v, then we can argue exactly as before. In the remaining

cases (ii)±(iv) we choose R0 large enough and R0 > R such that u � � in Rn n BR0
. Then it

follows by monotonicity that ut � � in Rn n BR0
for every t 2 �0;�1�. Thus we have

I�t� �
Z 1

0

Z
BR0

�f �x; u� ÿ f �x; u� ��ut ÿ u����ut ÿ u�dx d� �: I1�t�: �5:23�

We choose " > 0 small enough such that u � " in BR0
. Again we have ut � " in BR0

for

every t 2 �0;�1� by monotonicity. By setting u" :� maxfu; "g, we see that

u � u"; ut � �u"�t in BR0
8t 2 �0;�1�: �5:24�

In view of (5.21) �u" ÿ "� has bounded support, i.e. �u" ÿ "�2 W
1;p
0� �BR1

� for some

R1 > R0. An application of Theorem 4.2 to u" yields

k�u"�t ÿ u"kp � tR1k�u"�ykp � tR1kuykp 8t 2 �0;�1�: �5:25�
Now by using (5.23)±(5.25) we compute finally

jI1�t�j � kut ÿ ukp;BR0

Z 1

0

kf ��; u� ��ut ÿ u�� ÿ f ��; u�kq;BR0
d�

� k�u"�t ÿ u"kp;BR0

Z 1

0

k f ��; u" � ���u"�t ÿ u"�� ÿ f ��; u"�kq;BR0
d�
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� k�u"�t ÿ u"kp

Z 1

0

k f ��; u" � ���u"�t ÿ u"�� ÿ f ��; u"�kqd�

� tR1kuykp

Z 1

0

k f ��; u" � ���u"�t ÿ u"�� ÿ f ��; u"�kqd�;

and the assertions follow by proceeding as in the previous proof. &

For some applications it will be useful to have an estimate like (5.1) with the function f

replaced by any element of the (set-valued) maximal monotone graph ~f �x; v� of f with

respect to v (compare Remark 7.1(4)). ~f is defined by

~f �x; v� :� lim inf
h!0

f �x; v � h�; lim sup
h!0

f �x; v � h�
� �

8�x; v� 2 
� �0; sup�:

�5:26�
Note that, if F is defined by (5.13), then we can write alternatively

~f �x; v� � @vF�x; v�;
where @v F is the set-valued differential of F�x; v� with respect to v,

@vF�x; v� :� lim inf
h!0

F�x; v � h� ÿ F�x; v�
h

; lim sup
h!0

F�x; v � h� ÿ F�x; v�
h

� �
8�x; v� 2 
� �0; sup u�: �5:27�

COROLLARY 5.1

The conclusions of Theorem 5.2 and Lemma 5.1 hold if the function f ��; u���� in (5.1) is

replaced by any function g with g��� 2 ~f ��; u����.

Proof. From (5.11) we obtain that jg�x�j � a�x�b�x0; u�x�� 8x 2 
, which means that

g 2 Lq�
�. This ensures the convergence of the integral
R


 g�x��ut ÿ u�dx. Obviously,

there is nothing to prove if f �x; v� is continuous in v. In the remaining cases we proceed

as in the proof of Theorem 5.2 to infer thatZ



g�x��ut ÿ u�dx �
Z 1

0

Z



�g�x� ÿ f �x; u� ��ut ÿ u����ut ÿ u�dx d�

�: I2�t�: �5:28�
If f �x; v� is nonincreasing v, then we have

�g�x�ÿ f �x; u�x�� ��ut�x�ÿ u�x�����ut�x�ÿ u�x�� � 0 8x 2 
; � 2 �0; 1�:
Together with (5.28) this leads toZ




g�x��ut ÿ u�dx � 0 8t 2 �0;�1�: �5:29�

Furthermore, if f �x; z� is nondecreasing in z, then

jg�x� ÿ f �x; u�x� � ��ut�x� ÿ u�x���jjut�x� ÿ u�x�j
� j f �x; ut�x�� ÿ f �x; u�x��jjut�x� ÿ u�x�j 8x 2 
; � 2 �0; 1�:
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In view of (5.28) we infer that

jI2�t�j � kut ÿ ukpk f ��; ut� ÿ f ��; u�kq:

Then the assertion follows by proceeding as in the proof of Theorem 5.2. &

Remark 5.3. The reader verifies easily that Theorem 5.2, Lemma 5.1 and Corollary 5.1

hold true if the function f can be decomposed into a finite sum
Pk

i�1 fi where each of the

functions fi; i � 1; . . . ; k, satisfies at least one of the conditions (i)±(iv) of Theorem 5.2.

6. Local symmetry

In this section we study functions satisfying the `local' symmetry property (LS) from the

Introduction and the relation to continuous symmetrization.

DEFINITION 6.1 (Local symmetry)

Let u 2 S��Rn� and continuously differentiable on fx : 0 < u�x� < sup ug, and suppose

that this last set is open. Further, suppose that u has the following property. If x1 �
�x00; y1�2 Rn with

0 < u�x1� < sup u;
@u

@y
�x1� > 0; �6:1�

and x2 is the (unique!) point satisfying

x2 � �x00; y2�; y2 > y1; u�x1� � u�x2� < u�x00; y� 8y 2 �y1; y2�; �6:2�
then

@u

@xi

�x1� � @u

@xi

�x2�; i � 1; . . . ; nÿ 1; and

@u

@y
�x1� � ÿ @u

@y
�x2�: �6:3�

Then u is called locally symmetric in the direction y.

Remark 6.1. Geometrical meaning of local symmetry: (1) The condition u 2 S��Rn�\
C1�f0 < u < sup ug� is satisfied in the following typical cases (a) and (b).

(a) u 2 C1
��Rn� and limjxj!1 u�x� � 0.

(b) There are two bounded open sets 
i � Rn; i � 0; 1, with 
0 �� 
1, u 2 C

�Rn n 
0� \ C1�
1 n 
0�, 0 < u < sup u in 
1 n 
0, u � 0 in Rn n 
1, u � sup u in 
0

and

u�x�ÿ! sup u if x! @
0; x 2 
1 n 
0:

Note that we did not exclude sup u � �1 in case (b). (2) Let u; x1; x2 be as in Definition

6.1 and let U1 be the maximal connected component of f0 < u < sup ug \ fuy > 0g
containing x1. Since u 2 C1�f0 < u < sup ug� we have that for every �x0; y� 2 U1

u�x0; y� � u�x0; y1 � y2 ÿ y� < u�x0; z� 8z 2 �y; y1 � y2 ÿ y�: �6:4�
The condition (6.4) says that U1 finds a congruent counterpart after reflection about

some hyperplane fy � constg. Repeating this consideration for arbitrary components of
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f0 < u < sup ug \ fuy > 0g we infer the decomposition

f0 < u < sup ug �
[m
k�1

�Uk
1 [ Uk

2�
[

S: �6:5�

Here Uk
1 is some maximal connected component of f0 < u < sup ug \ fuy > 0g, Uk

2 is its

reflection about some hyperplane fy � dkg, dk 2 R, and we have

uy � 0 in S; �6:6�
and for every �x0; y� 2 Uk

1,

u�x0; y�� u�x0; 2dk ÿ y�< u�x0; z� 8z2�y; 2dk ÿ y�; k � 1; . . . ;m: �6:7�
Note that all the sets on the right-hand side of (6.5) are disjoint and there can be a

countable number of Uk
1 's, i.e. m � �1.

In many applications we need an `isotropic' variant of local symmetry.

DEFINITION 6.2

Let u be as in Definition 6.1. u is called locally symmetric in every direction if for every

rotation of the cartesian coordinate system x 7ÿ! � � ��0; ��, �0 2 Rnÿ1, � 2 R, the

function v��� :� u�x� is locally symmetric with respect to �.

Surprisingly it can be proved that functions which are locally symmetric in every

direction are `locally' radially symmetric (see figure 5).

Theorem 6.1. Let u be locally symmetric in every direction. Then we have the following

decomposition,

f0 < u < sup ug �
[m
k�1

Ak

[
S; �6:8�

Figure 4.

194 Friedemann Brock



where the Ak's are pairwise disjoint annuli BRk
�zk� n Brk

�zk� with Rk > rk � 0, zk 2
f0 < u < sup ug, u is radially symmetric in Ak, and more precisely,

u � u�jxÿ zkj�; @u

@�
< 0 in Ak; �6:9�

�� � jxÿ zkj�; and

u�x� � uj@Brk
�zk� 8x 2 Brk

�zk�;
1 � k � m: �6:10�

Furthermore, we have

ru � 0 in S; �6:11�
and there can be a countable number of annuli, i.e. m � �1. Finally, if fu > 0g is

unbounded, then the case R1 � �1 is possible.

Proof. We use the notations of Definition 6.1. Let x1; x2 be two points which satisfy (6.1),

(6.2), let U1 be the connected component of f0 < u < sup ug \ fx : uy�x� > 0g contain-

ing x1 and suppose that x is some point in U1 with u�x1� � u�x�. By a suitable rotation of

the coordinate system x 7ÿ! � � ��0; ��; �0 2 Rnÿ1; � 2 R, about the point x2 we can

achieve that the ray connecting x and x2 points into the positive �-direction, i.e. x 7ÿ! �1 �
��00; �1� and x2 7ÿ! �2 � ��00; �2�. We set v��� :� u�x�. It is easy to see that, if the distance

jx1 ÿ xj is small enough (say jx1 ÿ xj < "), then v���1� > 0 and v��1� � v��2� < v��00; ��
8� 2 ��1; �2�. By the assumptions this means that

@v

@�
��1� � ÿ @v

@�
��2� > 0 and

Figure 5.
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@v

@�i

��1� � @v

@�i

��2�; i � 1; . . . ; nÿ 1:

From a simple computation follows that the set

ÿ1 :� U1 \ fx : jxÿ x1j < " and u�x� � u�x1�g
is an open subset of some sphere fx : jxÿ zj � �1g, z 2 
, �1 > 0, and

@u

@�
�x� � @u

@�
�x1� < 0 8x 2 ÿ1; �� : radial distance from z�:

Let ÿ̂1 denote the maximal connected component of the set

x : jxÿ zj � �1 and
@u

@�
�x� < 0

� �
;

containing the point x1. Then, proceeding as before, we obtain that ÿ̂1 is relatively open in

fx : jxÿ zj � �1g and

@u

@�
�x� � @u

@�
�x1� 8x 2 ÿ̂1:

This means that ÿ̂1 is relatively closed in fx : jxÿ zj � �1g. Thus we have

ÿ̂1 � fx : jxÿ zj � �1g:
We can repeat these arguments for all points of U1. Since u 2 C1�f0 < u < sup ug� we

infer that u is radially symmetric in BR�z� n Br�z� for some R > r � 0 and �@u=@��
�x� < 0 8x 2 BR�z� n Br�z�. Note that, if fu > 0g is unbounded, then possibly R � �1.

The Theorem is proved. &

Next we give a purely analytic description of local symmetry in terms of continuous

symmetrization.

Theorem 6.2. Let 
 be an open set with 
 � 
� and u 2 W
1;p
0� �
� for some p 2�1;�1�.

Further, let G be a strictly convex Young function satisfying (3.43). Finally, let u be

continuously differentiable on fx : 0 < u�x� < sup ug and suppose that this last set is

open. Then, if

lim
t&0

1

t

Z
Rn

G�jruj�dxÿ
Z

Rn

G�jrutj�dx

� �
� 0; �6:12�

u is locally symmetric in direction y.

Proof. Let x1, x2 satisfy (6.1) and (6.2) and let U1 be as in Remark 6.1. We have

uy�x2� � 0. First assume that uy�x2� < 0. There are small neighbourhoods W1, W2 of the

points x1 and x2, respectively, such that uy > 0 in W1 and uy < 0 in W2. Let yi � yi�x0; u�,
i � 1; 2, denote the corresponding inverse functions which exist for every �x0; u� lying in a

small neighbourhood V of the point �x00; u�x00; y1��. Then the function ut can be repre-

sented by corresponding inverse functions yt
i, i � 1; 2, according to the formulas (2.10)

for sufficiently small values t > 0, say 0 < t < t0. Let Gi�t� denote the images of V in the

�x0; y�-domain after the mappings �x0; u� 7ÿ!�x0; yt
i�x0; u��, i � 1; 2. Note that G1�0� � W1

and G2�0� � W2.
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We approximate u by good functions which coincide with u in the domains Gi�0�,
i � 1; 2. By proceeding as in the proof of Theorem 3.1 we infer thatZ


n�G1�0�[G2�0��
G�jruj�dx �

Z

n�G1�t�[G2�t��

G�jrutj�dx �6:13�

and

I�t� :�
Z

G1�t�[G2�t�
G�jrutj�dx

�
X2

k�1

Z
V

G 1�
Xnÿ1

i�1

@yt
k

@xi

� �2
( )1=2

@yt
k

@u

���� ����ÿ1
0@ 1A @yt

k

@u

���� ����dx0du

8t 2 �0; t0�: �6:14�
We introduce the parameter � :� �1=2��1ÿ eÿt�, t 2 �0;�1�, and set  ��� :� I�t�. By

setting  �1ÿ �� :�  ��� 8� 2 �0; �1=2��, we formally extend the definition of  ��� for

all � 2 �0; 1�. Assume for a moment that  �0� >  �1=2�. Since  ��� is convex we obtain

that limt&0�I�t� ÿ I�0��=t < 0. In view of (6.13) and (6.14) this contradicts to (6.12). Thus

we have  �0� �  �1=2�. Since G is strictly convex we infer from this that y1;xi
� y2;xi

,

i � 1; . . . ; nÿ 1, and y1;u � ÿy2;u almost everywhere in V . This means that (6.4) is

satisfied throughout the domain G1�0�.
Next let us assume that uy�x2� � 0. Since uy�x1� > 0, the implicit function theorem

tells us that the problem

u�x00; y� � u�x00; y1� � "; �x00; y� 2 G1�0�;
has a unique solution y � y"1 if " is positive and small enough, say " 2 �0; "0�. For

"2�0; "0� let y"2 denote the (unique!) number satisfying y"1< y"2 and u�x00; y"1�� u�x00; y"2�<
u�x00; y� 8y 2 �y"1; y"2�. Since u is differentiable we can choose a sequence "m & 0 such

that uy�x00; y"m

2 � < 0. Then from the earlier considerations follows that uy�x00; y"m

1 � �
ÿuy�x00; y"m

2 �. Clearly we have limm!1 y"m

i � yi, i � 1; 2. Since u 2 C1�f0 < u < sup ug�
this yields

lim
m!1 uy�x00; y"m

2 � � ÿuy�x00; y1� < 0;

a contradiction. Thus the condition (6.4) is again satisfied for all x � �x0; y� 2 G1�0�.
Now set

Ĝ1 :�f�x0; y�2U1 : u�x0; y�� u�x0; y1�y2ÿ y�< u�x0; z� 8z2�y; y1�y2ÿ y�g:
Obviously we have G1�0� � Ĝ1, and we can argue as before to infer that Ĝ1 is relatively

open in U1. Let xm � �x0m; ym�; m � 1; 2; . . ., be any sequence in Ĝ1 converging to some

point x � �x0; y� 2 U1. Since u 2 C1�f0 < u < sup ug� we have uy�x� > 0 and u�x� �
u�x0; y1 � y2 ÿ y� � u�x0; y� 8y 2 �y; y1 � y2 ÿ y�. Therefore we find some value ŷ 2
�y; y1 � y2 ÿ y� such that u�x� � u�x0; ŷ� < u�x0; y� 8y 2 �y; ŷ�. If ŷ < y1 � y2 ÿ y, then

uy�x0; ŷ� � 0. This is impossible by the earlier considerations. Thus ŷ � y1 � y2 ÿ y, i.e.

x 2 Ĝ1. Therefore Ĝ1 is relatively closed with respect to U1. But this means that Ĝ1 � U1.

The Theorem is proved. &

Analogously one can prove the following extension of Theorem 6.2.
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COROLLARY 6.1

Let u satisfy the assumptions of Theorem 6.2 with the corresponding integrals replaced by

the more general ones in (3.18), where the functions G; a; aij; i; j � 1; . . . ; nÿ 1, are as

in Corollary 3.3 and G�x0; v; z� is strictly convex in z. Then the conclusions of Theorem 6.2

hold.

7. Elliptic problems

Now we apply the preceding considerations to elliptic problems. First we deal with the

variational problem (P) from the introduction.

Theorem 7.1. Let 
 be a domain in Rn with 
 � 
�. For some p 2 �1;�1� let K be a

closed subset of W
1;p
0� �
� and assume that K has the property that, if v 2 K, then also

vt 2 K for every t 2 �0;�1�. Let G � G�x0; v; z� be nonnegative and continuous on

Rnÿ1 � �R�0 �2, and suppose that G is strictly convex in z and satisfies (3.34). Further-

more, let u be a local minimizer of problem (P), and suppose that F; u satisfy the

assumptions of Theorem 5.1. Finally assume that the set f0 < u < sup ug is open and

u 2 C1�f0 < u < sup ug�.
Then u is locally symmetric in direction y.

Proof. From Theorem 5.1 we infer (5.4). In view of Corollary 3.3 and the inequality

J�u� � J�ut�, �t 2 �0;�1��, we obtain thatZ



G�x0; u; jruj�dx �
Z




G�x0; ut; jrutj�dx 8t 2 �0;�1�:

By Corollary 6.1 this means that u is locally symmetric in direction y. &

By Corollary 3.3 and 6.1 the following extension of Theorem 7.1 is obvious.

COROLLARY 7.1

Let 
;K;G;F; u be as in Theorem 7.1 and, in addition, suppose that jrvj in (1.1) is

replaced by the `̀ generalized gradient'' in (3.18) and the functions a; aij are as in

Corollary 3.3. Then the conclusion of Theorem 7.1 holds.

Theorem 7.1 yields the following Corollary 7.2 in the radially symmetric case.

COROLLARY 7.2

Let 
 � BR for some R > 0 or 
 � Rn, and let K;G;F and u be as in Theorem 7.1. In

addition, suppose that G and the function B in (5.2) are independent of x, F satisfies (5.3)

in every rotated coordinate system and

F � F�jxj; v� 8�x; v� 2 
� �0; sup u�: �7:1�
Then u is locally symmetric in every direction.

Remark 7.1. (1) If F is independent of x, then we may relax the conditions on F in

Theorem 7.1 and Corollaries 7.1 and 7.2. By Remark 5.2 it is enough to demand in this
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case that F is a Borel function and F�u� 2 L1�Rn�. (2) If F is as in Corollary 7.2 and is

differentiable in v, then �@F�=�@v� is nondecreasing in jxj. (3) In view of (2.30), the

assumption on K in Theorem 7.1 means that K may include side constraints of the types

�� 2 R; c � 0; � > 0�
' � v �  ; where ' � '�;  �  �; �7:2�Z




g�v�dx � �; where g is a Borel function; or �7:3�
jfv > cgj � �: �7:4�

In the case of the constraints (7.2) the statement of the problem allows to deal with `ring-

shaped' geometries. Note also that by the monotonicity of continuous symmetrization we

infer from (7.2) that ' � 't � vt �  t �  , �t 2 �0;�1��. Constraints of type (7.4) lead

to variational solutions of overdetermined boundary value problems (see [Se] and [AC]).

(4) Assume that F�x; v� is Lipschitz continuous in v and

K � W
1;p
0 �
� \ fconstraints of the form �7:2�g:

Then K is convex and well-known analysis shows that a local minimizer u of (P) is a

solution of the following (local) variational inequalityZ



Gz�x0; u; jruj�jrujÿ1rur�v ÿ u�dx �
Z




g�x��v ÿ u�dx

8v 2 K with kr�v ÿ u�kp < ": �7:5�
Here g��� 2 @vF��; u����, @vF�x; v� is defined by (5.27) and " is a given (small) constant.

These well-known problems appear in models for reaction and diffusion processes (see

[Di] and [K1]).

Remark 7.1(4) suggests to investigate directly the following differential inclusion

instead of problem (P).

u 2 W
1;p
0� �
�;

ÿr�Gz�x; u; jruj�jrujÿ1ru� 2 ~f �x; u�: �7:6�
Here ~f �x; v� denotes the maximal monotone graph of f �x; v� with respect to v (see (5.26)).

The idea in proving symmetry results consists in using a Green-type identity with test

function �ut ÿ u� (namely (7.10) below) and to exploit the estimates of x 5 for small t.

Clearly the assumptions on the data of the problem (7.6) and its solution will be more

restrictive than in Theorem 7.1, especially in the case of unbounded domains.

Theorem 7.2. Let 
 be a bounded domain in Rn with 
 � 
�, and let G � G�x0; z� be

nonnegative, continuous in x0, differentiable and strictly convex in z, and satisfies

G�x0; 0� � 0 and

Gz�x0; z� � C�1� zpÿ1� 8�x0; z� 2 Rnÿ1 � R�0 �7:7�
for some p 2 �1;�1� and C > 0. Furthermore, let u 2 W

1;p
0� �
�, let f � f �x; v� mea-

surable on 
� �0; sup u� , symmetrically nonincreasing in y and satisfies (5.11), and

suppose that f can be decomposed as follows
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f � f1 � f2 � f3; where �7:8�
f1 � f1�x; v� is continuous in v;

f2 � f2�x; v� is nonincreasing in v and

f3 � h�x�k�x0; v�; with h and k as in Theorem 5:2�iv�:
Finally let u 2 W

1;p
0� �
� satisfy weakly

ÿr�Gz�x0; jruj�jrujÿ1ru� � g in 
; �7:9�
where g��� 2 ~f ��; u����, ~f �x; v� denotes the maximal monotone graph of f �x; v� with

respect to v (see (5.26)). In addition, suppose that the set f0 < u < sup ug is open and

u 2 C1�f0 < u < sup ug�. Then u is locally symmetric in direction y.

Proof. Let q be defined by pÿ1 � qÿ1 � 1. Since u 2 W
1;p
0 �
� we have f ��; u���� 2 Lq�
�

by our assumptions and thus also g 2 Lq�
�. From (7.10) we obtain the identityZ



Gz�x0; jruj�jrujÿ1rur�ut ÿ u�dx �
Z




g�x��ut ÿ u�dx 8t 2 �0;�1�:
�7:10�

By using the convexity of G with respect to z and Corollary 3.3, we infer from this

0 �
Z




�G�x0; jrutj� ÿ G�x0; jruj��dx �
Z




g�x��ut ÿ u�dx 8t 2 �0;�1�:
�7:11�

We can estimate the right-hand side of (7.11) according to Theorem 5.2. This leads to

lim
t&0

1

t

Z



�G�x0; jrutj� ÿ G�x0; jruj��dx � 0:

Then the assertion follows by applying Corollary 6.1. &

A similar result holds also for solutions of (7.9) in the entire space.

Theorem 7.3. Let G � G�x0; z� be nonnegative, continuous in x0, differentiable and

strictly convex in z and let G satisfy

G�x0; 0� � 0 and

Gz�x0; z� � Czpÿ1 8�x0; z� 2 Rnÿ1 � R�0 �7:12�
for some p 2 �1;�1� and C > 0. Furthermore, let f ; u be as in Theorem 7.2 with


 � Rn. In addition, suppose that one of the following conditions (i) or (ii) is satisfied,

(i) u satisfies the decaying properties (4.17)±(4.19) of Theorem 4.3;

(ii) f satisfies (5.22) and u is positive and satisfies (5.21).

Then u is locally symmetric in direction y.

Proof. By Green's formula we obtain for every r > 0Z
Br

Gz�x0; jruj�jrujÿ1rur�ut ÿ u�dx
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�
Z

Br

g�x��ut ÿ u�dx�
Z
@Br

Gz�x0; jruj�jrujÿ1 @u

@�
�ut ÿ u�dS

8t 2 �0;�1�; �� : exterior normal�: �7:13�
Furthermore, we have by HoÈlder's inequality,

I�r� :� j
Z
@Br

Gz�x0; jruj�jrujÿ1 @u

@�
�ut ÿ u�dSj � Ckrukpÿ1

p;@Br
kut ÿ ukp;@Br

;

�7:14�
for some number C > 0. Since u 2 W1;p�Rn� \ C1�Rn� this means that limr&0 I�r� � 0.

Hence, by passing to the limit r ! �1 in (7.13) we see that (7.11) holds with 
 � Rn.

Then we argue as in the previous proof by applying Corollary 3.3, Theorem 5.2 and

Corollary 6.1. in the case (i) and by using Lemma 5.1 in the case (ii). &

Our method is also applicable to problems in ring-shaped domains.

COROLLARY 7.3

Let 
;
0 be two bounded domains in Rn with 
 � 
�; 
0� 
�0 and 
0�� 
. Further-

more, let G; f be as in Theorem 7.2 and let u 2 W
1;p
0 �
� be a weak solution of the

following problem

ÿr�Gz�x0; jruj�jrujÿ1ru� � g; 0 � u � 1 in 
 n 
0;

u � 1 in 
0; �7:15�
where g is as in Theorem 7.2. In addition, suppose that the set f0 < u < 1g is open and

that u 2 C1�f0 < u < 1g�. Then u is locally symmetric in direction y.

Proof. Since 
0 � 
�0, we see that �ut ÿ u� 2 W
1;p
0 �
 n 
0� for every t 2 �0;�1�. There-

fore the identity (7.11) again holds and we can proceed exactly as in the proof of

Theorem 7.2. &

The proof of the following corollary is analogous.

COROLLARY 7.4

Let G; f ; u be as in Corollary 7.3 with 
 replaced by Rn. In addition, suppose that one of

the conditions (i) or (ii) of Theorem 7.3 is satisfied. Then u is locally symmetric in

direction y.

By using the Corollaries 3.3 and 6.1 we may extend the previous results to more

general differential operators (with obvious changes in the proof).

COROLLARY 7.5

Let the functions G; a; aij, i; j � 1; . . . ; nÿ 1, be as in Corollary 3.4 and independent of v.

Furthermore, let f ; u be as in Theorem 7.2 or 7.3 with the equation (7.9) replaced by

ÿ
Xn

i�1

@

@xi

Gz x0;
Xn

j;k�1

ajkuxj
uxk

( )1=2
0@ 1A Xn

j;k�1

ajkuxj
uxk

( )ÿ1=2Xn

j�1

aijuxj

0@ 1A� g:

�7:16�
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(Here xn :� y; ann :� a2 and ain � ani :� 0; i � 1; . . . ; nÿ 1.) Then the conclusions of

Theorem 7.2 or 7.3, respectively, hold.

In the `isotropic' cases the following consequences of the above results are immediate.

COROLLARY 7.6

Let u satisfy the assumptions of Theorem 7.2, 7.3 or of Corollary 7.3, 7.4. Suppose that

the function G and the functions b and k in (5.10), respectively (7.8), are independent of x.

Further, let 
 � BR or 
 � Rn and 
0 � Br for some numbers R > r > 0, and suppose

that

f � f �jxj; v�; f is nonincreasing in jxj: �7:17�
Then u is locally symmetric in every direction.

Let us give a typical example with discontinuous nonlinearity f which is covered by

Theorem 7.3 and Corollary 7.6.

Example 7.1. Let u 2 W1;p�Rn� for some p 2 �1;�1�, and let ' � '�x0� be a mea-

surable function on Rnÿ1 satisfying

'�x0� � � 8x0 2 Rnÿ1 for some � > 0: �7:18�
Further let u 2 W1;p�Rn� satisfy

ÿ�pu � ÿr�jrujpÿ2ru� � g; u > 0 in Rn; �7:19�
where

g�x�
� 1 if u�x� > '�x0�
2 �0; 1� if u�x� � '�x0�
� 0 if u�x� < '�x0�

8><>: 8x 2 Rn: �7:20�

From (7.20) we see that g��� 2 ~f ��; u����, where ~f �x; v� is the maximal monotone graph of

f �x; v� � ��fv > '�x0�g; �x; v� 2 Rn � �0; sup u�:
Note that, if p � 2; n � 3 and ' � '�jx0j�, then the problem (7.19) can be seen as a

model for an equilibrium configuration of incompressible axially symmetric rotating

fluids or rotating stars. The fluid rotates about the y-axis, the function f ��; u���� represents

the mass density of the fluid and the function ' comes from the (prescribed) rotational

law (see [Lio2, F], [B3]).

In view of (7.18) and since u 2 Lp�Rn� we have g 2 L1�Rn�. Since g is bounded, this

yields limjxj!1 u�x� � 0. By (7.18) we infer that g has bounded support. Now we see that

u satisfies the assumptions (and in particular (ii)) of Theorem 7.3. In the particular case

' � �, (i.e. f �x; v� � ��fv > �g), u satisfies the assumptions of Corollary 7.6.
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