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Radial symmetry for nonnegative
solutions of semilinear elliptic equations
involving the p-Laplacian

Notation

IR+
0 {x ∈ IR : x ≥ 0}
|x|

√
x2

1 + . . . x2
n if IRn 3 x = (x1, . . . , xn)

∇ gradient

1. Preliminaries

Let B be a ball in IRn, centered at the origin, p > 1, and let

f ∈ C(IR+
0 × IR+

0 ), f = f(r, v) nonincreasing in r , (r ≥ 0, v ≥ 0). (1)

We consider weak solutions u of the following problem

(P) u ∈ W 1,p
0 (B) ∩ C1(B),

u ≥ 0, u 6≡ 0, −∆pu ≡ ∇(|∇u|p−2∇u) = f(|x|, u) in B, (2)

and we ask for conditions on the nonlinearity f , under which u is radially symmetric.

The following result is well-known from the celebrated paper of Gidas, Ni and Niren-

berg, [GNN1]:

If p = 2, u ∈ C2(B), u > 0 and f admits a decomposition

f = f1 + f2, where (3)

f1 = f1(r, v) is Lipschitz-continuous in v,

f2 = f2(r, v) is nondecreasing in v, (r ≥ 0, v ≥ 0),
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then u is radially symmetric and radially decreasing, i.e.

u = u(r), (r = |x|),
∂u(x)

∂r
< 0, if x ∈ B \ {0}.

(4)

The proof of this result uses the so-called moving plane method which turned out

to be a very powerful technique in showing that positive solutions of some boundary

value problems in symmetric domains are symmetric (see e.g. [GNN1,2],[BeN1,2],[Da],

[Li1,2],[LN] and the literature cited therein). The method exploits the invariance of

the equation with respect to reflections and maximum and comparison principles for

uniformly elliptic operators. It should be pointed out that the moving plane technique

is not restricted to classical solutions, due to some refinements in [BeN2] and [Da]. For

instance, one can show that the above result holds true, if u is merely in C1(B).

However, if p 6= 2 in problem (P) - or, more generally, in case of degenerate elliptic

operators - the moving plane device is applicable only under additional assumptions

on f and u (see [BaN],[Dam]). Therefore there where some attempts in the literature

to prove the symmetry of the solutions by other means.

Combining an isoperimetric inequality and a Pohozaev-type identity Kesavan and

Pacella [KP] showed that solutions of (P) satisfy (4) provided that p = n and f is

positive and independent of x. Note that this idea is due to P.-L. Lions who gave a

proof of this result in the special case of two dimensions. However, this method is not

applicable if p 6= n.

In this paper we obtain new symmetry results for solutions of (P) and also for solutions

of a similar problem in the entire space. Our assumptions on the nonlinearity f are

much weaker then in (3): In the Theorems 1 and 2 below the function f merely

satisfies some growth condition in neighbourhoods of its zero points. Our approach is

based on the Lemmata 1 and 1’ below. These weak symmetry results were recently

obtained by the author, by using a new rearrangement technique called continuous

Steiner symmetrization (CStS) (see [Br1,2]). It would go beyond the scope of this

article to give the definition of CStS here, since its construction is quite complicated.

But since that material is relatively new, let us explain some ideas.

Given a Banach space X of measurable functions (e.g. Lp(IRn) or W 1,p
0 (IRn), p ∈



[1,+∞)), and a unit vector e ∈ IRn, the CStS in direction e - or CStS, in short - is a

continuous homotopy t 7−→ vt, 0 ≤ t ≤ +∞, which connects v ∈ X with its Steiner

symmetrization with respect to the hyperplane {x : x · e = 0}, v∗, such that v0 = v

and v∞ = v∗. Several integral inequalities of the form∫
IRn

F (x, v,∇v) dx ≥
∫

IRn

F (x, vt,∇vt) dx, 0 < t ≤ +∞, (5)

were proved in [Br1,2], e.g. for F (x, v,∇v) ≡ |∇v|p. Note also, that, if F (x, v,∇v) ≡
G(v) with G continuous, then (5) holds with the equality sign.

Furthermore, there holds a useful symmetry criterion (see [Br2], Theorem 6.2):

Let u ∈ W 1,p
0 (B) ∩ C1(B), u ≥ 0 and∫

B

(
|∇ut|p − |∇u|p

)
dx = o(t) as t↘ 0. (6)

Then u satisfies some weak - called local - kind of symmetry which can be described

roughly as follows: Every connected component of the subset {(x, u(x)) : 0 < u(x) <

supu, e · ∇u 6= 0} of the graph of u finds a congruent counterpart after reflection

about some hyperplane {x : x · e = λ}, λ ∈ IR.

Note that the proof of this criterion is quite delicate and depends on the con-

struction of CStS and on the convexity of the integrands in (6). The criterion can

be used to ”identify symmetric situations” for local minimizers in some variational

problems. Furthermore, by exploiting the structure of the equation in (2), one can

show that solutions of (P) satisfy (6) for CStS’s in arbitrary directions e, (|e| = 1).

Then some purely geometric observations lead to the following

Lemma 1 (see [Br2], Theorem 7.2)

Let u be a solution of (P). Then B permits the following decomposition,

B =
m⋃
k=1

Ck ∪ {x : ∇u(x) = 0}, where (7)

Ck = BRk
(zk) \Brk(zk), (zk ∈ B, 0 ≤ rk < Rk), (8)

u = u(ρ), (ρ = |x− zk|), and

∂u(x)

∂ρ
< 0 ∀x ∈ Ck, (9)



u(x) ≥ u
∣∣∣
∂Brk

(zk)
∀x ∈ Brk(zk), (10)

(k = 1, . . . ,m),

and m ∈ IN ∪ {+∞}.

Remark 1 In accordance with [Br2], we will call any function u ∈ C1(B) which

vanishes on ∂B and satisfies the conditions (7)-(10), locally symmetric.

Note that, since u ∈ C1(B), (7) and (9) imply

∇u = 0 on B ∩ ∂Ck, (k = 1, . . . ,m). (11)

By using well-known means as the maximum principle and the principle of unique con-

tinuation one can infer further symmetries of the solutions from their local symmetry

in various cases. Below we cite a result from [Br2] which will not be used here, since

the symmetry proofs in this paper are based on some new observations and lead to

results which are more general.

Lemma 2 (see [Br2], Theorem D)

Let u be a solution of (P), and suppose that one of the following conditions (i) or (ii)

is satisfied, ( v ≥ 0, r ≥ 0 ),

(i) f(r, v) > 0;

(ii) u > 0 in B in case that n = 1 and

f = f1 + f2, where

f2 = f2(r, v) is nondecreasing in v and either

(a) p ∈ (1, 2] and f1 = f1(r, v) satisfies a uniform Hölder condition in v

with exponent p− 1, or

(b) p > 2 and f1 ≡ 0.

Then (4) holds.

We will essentially use a strong maximum principle for the p-Laplacian which is due

to Vazquez [V]. We mention that we need only its ”boundary point version” Lemma

3’ below.



Definition 1 A function β belongs to the class Ap , (β ∈ Ap), if β ∈ C(IR+
0 ), β(0) =

0, β is nondecreasing, and either

(i) β(S) = 0 for some S > 0, or (12)

(ii)

1∫
0

(sβ(s))−1/p ds = +∞. (13)

Lemma 3 Let Ω be a domain in IRn, u ∈ L∞(Ω), ∆pu ∈ L1
loc(Ω) in the sense of

distributions in Ω,

u ≥ 0, −∆pu+ β(u) ≥ 0 a.e. in Ω (14)

where β ∈ Ap. Then either u = 0 a.e. in Ω or u > 0 in Ω in the sense that for every

compact K ⊂ Ω there is a constant c = c(K) > 0, such that u ≥ c a.e. in K.

Lemma 3’ Let Ω, u, β as in Lemma 3 and let x0 be a point on ∂Ω satisfying the

interior sphere condition. Let B be one such sphere and ν the corresponding interior

normal at x0. Then there exists γ > 0, such that

ess lim inf
u(x)

(x− x0) · ν
≥ γ as x→ x0, x ∈ B; (15)

in particular, if u ∈ C1(Ω ∪ {x0}) and u(x0) = 0, we have

∂u

∂ν
(x0) ≥ γ. (16)

Remark 2 Let β ∈ Ap. Since for every s > 0 we have

(s/2)β(s/2) ≤
s∫

0

β(t) dt ≤ sβ(s),

due to the monotonicity of β, (13) can be reformulated as

(ii′)

1∫
0

( s∫
0

β(t) dt
)−1/p

ds = +∞. (17)

The condition (13) means that β must not be very large near s = 0. (13) is satisfied if

β(s) ≤ csp−1

for a certain c > 0 and 0 < s < 1. Note that for p = 2 we recover then the classical

strong maximum principles for the Laplacian in Lemma 3 and 3’.



But (13) is also satisfied by β’s for which β(s)/sp−1 is not bounded at 0, for instance

if

β(s) ≤ sp−1| log s|p, (0 < s < 1).

2. Radial symmetry in a ball

Theorem 1 Let u be a solution of problem (P) and suppose that

(a) if f(R, V ) = 0 for some V > 0 and R ≥ 0, then there is a function β ∈ Ap, such

that

f(r, v) ≤ β(V − v) for 0 ≤ v ≤ V and r ≥ 0. (18)

Then

supp u =
m⋃
k=1

BRk
(zk), (19)

where zk ∈ IRn, Rk > 0, u is radially symmetric in BRk
(zk) with respect to the origin

zk, i.e.

u = u(ρ), (ρ = |x− zk|), and

∂u(x)

∂ρ
< 0 ∀x ∈ BRk

(zk) \ {zk}, (k = 1, . . . ,m), (20)

and the case m =∞ is possible in (19). Furthermore, if in addition either one of the

following conditions (b1) or (b2) is satisfied,

(b1) u > 0 in B ;

(b2) if f(R, 0) = 0 for some R ≥ 0, then there is a function β ∈ Ap, such that

−f(r, v) ≤ β(v) for v ≥ 0, r ≥ 0, and (21)

if n = 1 and f(R, 0) < 0 for some R ≥ 0, then u > 0 in B ;

then (4) holds.

The proof of Theorem 1 is based on the following observation.

Lemma 4 Let u be as in Lemma 1. Let C = BR(z) \ Br(z) be an annulus of the



decomposition (7) and x0 ∈ ∂C∩B. Then, if x0 ∈ ∂Br(z) and r > 0, or if x0 ∈ ∂BR(z)

and n ≥ 2, we have

f(|x0|, u(x0)) = 0. (22)

Proof : First suppose that x0 ∈ ∂Br(z) and r > 0. Since, by (10), u(x) ≥ u(x0) in

Br(z) and ∇u(x0) = 0, we can apply Lemma 3’ to infer that f(|x0|, u(x0)) ≤ 0. On

the other hand, since u(x) ≤ u(x0) in C, Lemma 3’ gives also f(|x0|, u(x0)) ≥ 0.

Next suppose that x0 ∈ ∂BR(z) and n ≥ 2. Since u(x) ≥ u(x0) in C and ∇u(x0) = 0,

Lemma 3’ yields f(|x0|, u(x0)) ≤ 0. It remains to show

f(|x0|, u(x0)) ≥ 0. (23)

Assume that

there is a subsequence {Ck′} of annuli in (7), such that

lim
k′→∞

zk′ = x0 and lim
k′→∞

Rk′ = 0. (24)

Since u(x) > u
∣∣∣
∂BRk′ (zk′ )

in BRk′ (zk′), the maximum principle tells us that there are

points yk′ ∈ BRk′ (zk′) such that 0 ≤ −∆pu(yk′) = f(|yk′ |, u(yk′)). Since limk′→∞ yk′ =

x0, we obtain (23) in this case.

Now suppose that (24) does not hold. Using the decomposition (7) we see that either

(i) there is an annulus C1 = BR1(z1) \Br1(z1) in (8) with x0 ∈ ∂BR1(z1)

and ∇u(x) = 0 in Bε(x0) \ (C ∪ C1) for some ε > 0, or

(ii) ∇u(x) = 0 in Bε(x0) \ C for some ε > 0.

Clearly in both cases (i) and (ii) we have u = u(x0) on some open subset of B, which

means that f(|x0|, u(x0)) = 0. ut

Proof of Theorem 1: By Lemma 1, u is locally symmetric. We claim that the annuli

Ck in (7) are in fact punctured balls, i.e. we have in (8)

rk = 0, (k = 1, . . . ,m). (25)



Let C = BR(z) \ Br(z), (R > r), be one of the annuli in (8) and suppose that r > 0.

By Lemma 4 we have f(|x|, U) = 0 ∀x ∈ ∂Br(z), where U = u
∣∣∣
∂Br(z)

. We set

w := U − u. Assumption (a) yields

w ∈ W 1,p(C) ∩ C1(C),

w ≥ 0, −∆pw + β(w) ≥ 0 in C,

w = |∇w| = 0 on ∂Br(z),

where β ∈ Ap. But this is impossible by Lemma 3’. Hence we must have r = 0. This

proves (25) and the assertions (19),(20) follow.

Next we claim that

u = 0 on ∂BRk
(zk), (k = 1, . . . ,m). (26)

We fix some l ∈ {1, . . . ,m}, l 6=∞, and set

ul(x) :=


u
∣∣∣
∂BRk

(zk)
if x ∈ BRk

(zk), (k = 1, . . . ,m, k 6= l)

u(x) otherwise
.

Then ul ∈ C1(B), since u ∈ C1(B). Hence ∇ul = 0 in B \ BRl
(zl) which means that

ul(x) = u
∣∣∣
∂BRl

(zl)
∀x ∈ B \BRl

(zl). Since ul ≤ u, this implies that u = 0 on ∂BRl
(zl),

and (26) follows. This proves (4) in the case (b1).

Next suppose (b2) and assume that for some k ∈ {1, . . . ,m},

BRk
(zk) 6= B. (27)

Since u ∈ C1(B), this implies

|∇u| = 0 on ∂BRk
(zk). (28)

We split into two cases.

(i) Let n ≥ 2. Then we have f(|x|, 0) = 0 on ∂BRk
(zk) by Lemma 4. By assumption,

there is a function β ∈ Ap, such that −∆pu + β(u) ≥ 0 in BRk
(zk). Together with

(28), this contradicts to Lemma 3’.



(ii) Let n = 1. In view of (28), the strong maximum principle yields f(|x|, 0) ≤ 0 on

∂BRk
(zk). Furthermore, there cannot be f(|x0|, 0) < 0 at some point x0 ∈ ∂BRk

(zk)

in view of (b2) and (26). Hence we must have f(|x|, 0) = 0 on ∂BRk
(zk). Proceeding

as in case (i), we obtain again a contradiction to Lemma 3’. ut

Remark 3 Recalling Remark 2, it is easy to check that Theorem 1 contains Lemma

2 as a special case.

3. Radial symmetry for entire solutions

Next we consider weak solutions of the following problem

(P∞) u ∈ W 1,p(IRn) ∩ C1(IRn),

u ≥ 0, u 6≡ 0, −∆pu = f(|x|, u) in IRn, (29)

u(x) −→ 0 as |x| → ∞. (30)

Since every solution u of (P∞) with bounded support is also a solution of (P) with

B = BR(0) and R > 0 large enough, Theorem 1 yields the following

Corollary 1 Let u be a solution of problem (P∞) with bounded support, and sup-

pose that f satisfies condition (a) of Theorem 1. Then (19) and (20) hold.

Remark 4 Solutions of (P∞) with bounded support play a certain role in describ-

ing reaction-diffusion processes where u stands for the stationary concentration of a

chemical (see [Di],[KKL]). The set {u ≡ 0} is then often called the ”dead core”. Note

that dead cores can appear if f does not satisfy the conditions (b1),(b2) of Theorem

1. This is the case, if for instance

f(t, 0) = 0 and f(t, v) ≤ −cvq for 0 < v < 1, t ≥ 0,

for certain constants c > 0 and q ∈ (0, p− 1).

Next we investigate positive solutions of (P∞) satisfying certain decaying conditions

at infinity.

Theorem 2 Let u be a positive solution of problem (P∞), and let f satisfy condition



(a) of Theorem 1. In addition, suppose that either

(i) f(t, v) is nonincreasing in v for 0 < v < δ for some δ > 0

and f(| · |, u(·)) ∈ L1(IRn), or (31)

(ii) u satisfies, ( α ∈ (0, 1), R, d > 0 ),

u(x) ≥ ϕ(R/α) if |x| ≤ R, and

ϕ(|x|/α) ≤ u(x) ≤ ϕ(|x|),
|∇u(x)| ≤ d|x|−1ϕ(|x|)

 if |x| ≥ R, (32)

where ϕ : R+ −→ R+ is decreasing and continuous and satisfies

+∞∫
0

r(n/p)−1ϕ(r) dr < +∞.

Then there is some point x0 ∈ IRn such that

u = u(ρ), (ρ = |x− x0|), and

∂u(x)

∂ρ
< 0 if x ∈ IRn \ {x0}.

(33)

Remark 5 It is easy to verify that u satisfies the assumptions (ii) of Theorem 2 if,

( R > 1, δ, c1, c2, c3, γ, λ > 0, σ, τ ∈ R ),

u(x) ≥ δ for |x| ≤ R (34)

and either

(α) γ > (n/p) and (35)

c1|x|−γ
(

log |x|
)−σ
≤ u(x) ≤ c2|x|−γ

(
log |x|

)−σ
|∇u(x)| ≤ c3|x|−γ−1

(
log |x|)

)−σ
 if |x| ≥ R, or

(β)
c1e
−λ|x||x|τ ≤ u(x) ≤ c2e

−λ|x||x|τ

|∇u(x)| ≤ c3e
−λ|x||x|τ

 if |x| ≥ R. (36)

The proof of Theorem 2 is based on the following analogue of Lemma 1 see [Br2],

Theorem 7.3).

Lemma 1’ Let u be a solution of problem (P∞) satisfying either one of the conditions



(i) or (ii) of Theorem 2. Then u satisfies (7)-(10) withB replaced by IRn. Furthermore,

the case R1 = +∞ is possible in (8).

Proof of Theorem 2: By assumption, u is as in Lemma 1’. Proceeding as in the

proof of Theorem 1, we infer that rk = 0, (k = 1, . . . ,m), which means that u = 0 on

∂BRk
(zk), (k = 2, . . . ,m). But since u > 0, this implies m = 1, and (33) follows. ut

Remark 6 The Lemmata 1,1’ and 3’ remain valid for ”p-Laplacian-like” operators

Lu ≡ ∇
(
g(|∇u|)|∇u|−1∇u

)
, where

g ∈ C(IR+
0 ), g is strictly increasing and

czp−1 ≤ g(z) ≤ Czp−1 for z ≥ 0 and C > c > 0, (37)

(see [V] and [Br2]). Therefore Theorem 1,2 and Corollary 1 hold true for ∆p

replaced by operators L satisfying (37).
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