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AN APPROACH TO SYMMETRIZATION
VIA POLARIZATION

FRIEDEMANN BROCK AND ALEXANDER YU. SOLYNIN

Abstract. We prove that the Steiner symmetrization of a function can be
approximated in Lp(Rn) by a sequence of very simple rearrangements which
are called polarizations. This result is exploited to develop elementary proofs
of many inequalities, including the isoperimetric inequality in Euclidean space.
In this way we also obtain new symmetry results for solutions of some varia-
tional problems. Furthermore we compare the solutions of two boundary value
problems, one of them having a ”polarized” geometry and we show some point-
wise inequalities between the solutions. This leads to new proofs of well-known
functional inequalities which compare the solutions of two elliptic or parabolic
problems, one of them having a ”Steiner-symmetrized” geometry. The method
also allows us to investigate the case of equality in the inequalities. Roughly
speaking we prove that the equality sign is valid only if the original problem
has the symmetrized geometry.

1. Introduction

An isoperimetric theorem portrays the maximum or the minimum, subject to
possible side conditions, of a functional whose domain is a collection of sets or
functions (the “data” of the problem) and which has a special physical significance.
In many important cases the extremum value of the functional is attained if the
data have a simpler—symmetrized—geometry, i.e. the inequality can be expressed
in terms of rearrangements. (The simplest example is the classical isoperimetric
inequality in Euclidean space which says that among all sets of prescribed given vol-
ume the ball has the smallest perimeter.) Since the times of Polya and Szegö [PS] re-
arrangement techniques have turned out to be very fruitful in proving isoperimetric
theorems in analysis and function theory. The articles [Ta1], [ALT2], [Du3]–[Du4],
[Bae2] and also the monograph [Ka1] provide a large number of references.

Most results in the literature deal with the (k, n)-Steiner symmetrizations (for
definition see section 4) and have been proved via the “method of level sets” (see
[Ta1]–[Ta2], [ADLT], [We1], [We2] and also [Ka1]). To employ this method one be-
gins by assuming elementary facts about symmetrizations like the Hardy-Littlewood
inequality (see (3.9)) or the isoperimetric inequality in Rn and then proceeds via
sometimes extensive analysis using tools such as the coarea formula. One can prove
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in this way Dirichlet-type inequalities, and also inequalities which compare the solu-
tions of two boundary value problems, one of them having a “Steiner symmetrized”
geometry.

Alvino, Lions and Trombetti [ALT2] have recently introduced a different method
which is based on the Trotter product formula for semigroups. This enabled them
to prove comparison theorems for Steiner symmetrization in a very elegant way.

Another approach to symmetrization can be based on polarization. This simple
type of rearrangement was introduced for plane sets by Wolontis [Wo] in 1952 and
for functions by Baernstein and Taylor [BT] in 1976. In 1985 and later Dubinin
[Du1]–[Du4] often used polarization to derive inequalities for capacities in space.
Solynin [So1] applied polarization to show the monotonicity of some capacities
under one type of continuous Steiner symmetrization.

It was observed in [BT] that the proof of some integral inequalities becomes al-
most trivial if one replaces the symmetrization by the polarization. Furthermore,
by using this result and some compactness argument, Baernstein proved a gen-
eral convolution-type inequality for the (k, n)-Steiner and cap symmetrizations in
a nice recent paper [Bae2]. Then he reduced the Dirichlet-type inequalities and
comparison theorems for symmetrizations to this single inequality.

The present paper is a further step in this direction. Here we would like to warn
the reader that some of the results which we derive for symmetrizations already
exist in the literature. However, we hope to justify this by presenting new proofs
which seem to be simpler than any of the old proofs.

We prove that the (k, n)-Steiner symmetrization of a nonnegative function (1 ≤
k ≤ n) can be approximated in Lp(Rn) by a sequence of polarizations. Also we show
in the particular case of a characteristic function of an open or compact set that
the convergence can even be managed in the Hausdorff metric. By using this result
we obtain elementary proofs of some inequalities, in particular for convolutions and
Dirichlet-type integrals, and also the isoperimetric inequality in Euclidean space.

Moreover we derive new symmetry results for minimizers of some variational
problems and some properties and relations for general rearrangements along that
way.

Furthermore we compare the solutions of two boundary value problems, one of
which has a “polarized” geometry, and we show some pointwise inequalities be-
tween the solutions. By exploiting the above-mentioned approximation we develop
new proofs of functional inequalities which compare the solutions of two elliptic
or parabolic problems, one of which has a “Steiner-symmetrized” geometry. The
method allows also to investigate the case of equality in the inequalities. Roughly
speaking we prove that the original problem has the symmetrized geometry.

2. Basic notations

Let Rn be the Euclidean n-space and n ≥ 2. If x ∈ Rk, 1 ≤ k ≤ n, let |x| be
the Euclidean norm of x. For A ⊂ Rn let A and ∂A denote the closure and the
boundary of A, respectively. For A,B ⊂ Rn let A + B = {a+ b : a ∈ A, b ∈ B},
and for r ∈ R let rA = {rx : x ∈ A}.

We denote by Br(x) the open ball in Rn with radius r and center in x, and we
write Br = Br(0). If A ⊂ Rn and r > 0, then we denote by Ar = A + rB1 and
A−r = A \ (∂A + rB1) the exterior and interior parallel sets of A, respectively.
Let us recall the following well-known properties (see e.g. [Ha, pp. 147]). For any
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r, s ≥ 0

Ar ⊂ As if 0 ≤ r ≤ s,(2.1)
(Ar)s = Ar+s, (A−r)−s = A−r−s,(2.2)
(A−s)r ⊂ Ar−s ⊂ (Ar)−s.(2.3)

Let F and G denote the collection of all nonempty sets in Rn which are compact
or open, respectively. Let Gb denote the subclass of G consisting of all bounded
open sets. We define the Hausdorff distance between two compact sets M,N by

d(M,N) := inf{r > 0; M ⊂ Nr, N ⊂Mr}.

It is well known that d is a metric on F (see [Ha, pp.151]). We call linear subman-
ifolds of Rn planes. Also we will call a point x ∈ Rn a 0-dimensional plane through
x.

We denote byM the collection of all Lebesgue measurable sets in Rn with finite
measure. If M is a measurable set in Rk (1 ≤ k ≤ n), then Lk(M) denotes its k-
dimensional measure. Often we treat measurable sets only in a.e. sense, i.e. we
write

M = N iff Lk(M∆N) = 0(2.4)

(here M∆N denotes the symmetric difference (M \N) ∪ (N \M)) and

M ⊂ N iff Lk(M \N) = 0.(2.5)

We denote by ‖ · ‖p the usual norm in the space Lp(Rn), 1 ≤ p ≤ +∞. For
functions u ∈ C(Rn) we define the modulus of continuity by

ωu(δ) := sup{|u(x)− u(y)| : |x− y| < δ}, δ > 0.

If Ω is an open set in Rn, we denote by W 1,p(Ω) the Sobolev space of functions
u ∈ Lp(Ω) having generalized partial derivatives uxi ∈ Lp(Ω), i = 1, . . . , n, and
we denote by W 1,p

0 (Ω) the completion of C∞0 (Ω) in the space W 1,p(Ω). Usually we
extend measurable functions u : Ω → R+

0 by zero outside Ω, so that W 1,p
0 (Ω) ⊂

W 1,p(Rn) in that sense (see [A]).
By C0,1

0 (Ω) we denote the space of Lipschitzean functions with compact support
in Ω.

For any function space the lower index “+” denotes the corresponding subspace
of nonnegative functions, e.g. Lp+(Rn), W 1,p

0+ (Ω), C0,1
0+ (Ω), . . . .

The space of measurable functions with bounded variation is denoted by BV (Rn)
and we write

‖Du‖BV := sup
{∫
Rn

u

n∑
i=1

∂ψi
∂xi

dx :
n∑
i=1

ψ2
i ≤ 1, ψi ∈ C∞0 (Rn), i = 1, . . . , n

}
.

Recall also that if u ∈ W 1,1(Rn), then ‖Du‖BV = ‖∇u‖1. Furthermore, if M is a
Caccioppoli set in Rn, then ‖Dχ(M)‖BV is the perimeter of M in the sense of De
Giorgi (see [Ta3]).

Finally, a function j : R+
0 −→ R+

0 is called a Young function if j is continuous
and convex with j(0) = 0.
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3. Rearrangements

Here we introduce the concept of rearrangement and investigate some general
properties which will be of later use.

Any mapping T : A −→ B, where A and B are nonempty collections of subsets
of Rn, is called a set transformation. We write Dom (T ) for A and Im (T ) for the
family of image sets T (A), A ∈ A. If Ti, i = 1, 2, . . . ,m, are set transformations
such that Im (Ti) ⊂ Dom (Ti+1), i = 1, 2, . . . ,m− 1, then ©m

i=1Ti denotes their
composition Tm ◦ · · · ◦ T2 ◦ T1.

A set transformation T is called monotone if T (A) ⊂ T (B) whenever A,B ∈ A
and A ⊂ B. We say that T is measure preserving if (F ∪ G) ∩ M ⊂ A and
Ln(T (M)) = Ln(M) for all sets M ∈ (F ∪ G) ∩M. Every monotone and measure
preserving set transformation is called a rearrangement.

If T is a rearrangement, there exists a continuation T̃ of T ontoM, which is again
a rearrangement. (Obviously the images T̃ (M), M ∈ M, and the monotonicity of
T̃ have to be understood in the a.e. sense (2.4) and (2.5)!) It is easy to verify that
T̃ is uniquely determined, and if M ∈M, then

T̃ (M) =
∞⋂
i=1

T (Gi)

for every decreasing sequence {Gi} ⊂ G with lim
i→∞

Ln(Gi \M) = 0. Also

T̃ (M) =
∞⋃
i=1

T (Fi)

for every increasing sequence {Fi} ⊂ F with lim
i→∞

Ln(M \ Fi) = 0.

Of course we will treat the transformation T and its natural continuation T̃ as
the same rearrangement. Nevertheless in some cases we have to distinguish strictly
between the different definitions of T in the classes F ∪ G and M.

Now we introduce a natural class of functions for which a rearrangement can be
defined. We say that a measurable function u : Rn −→ R belongs to S ( the class
of “symmetrizable” functions ) if

Ln
(
{u > c}

)
< +∞ ∀c > inf u.

(Here and in the following we use the abbreviation {u > c} = {x ∈ Rn : u(x) > c}.)
Note that the spaces Lp+(Rn), W 1,p

+ (Rn) (1 ≤ p < +∞), and C0,1
0+ (Rn) are subspaces

of S+.
If T is a rearrangement and u is a continuous function in S, then the relations

Tu(x) := sup
{
c > inf u : x ∈ T

(
{u > c}

)}
x ∈ Rn, inf Tu := inf u,

(3.1)

define a function Tu. If u is in S but is not continuous, we define Tu by replacing
“sup” in (3.1) by “ess sup”. Clearly the function Tu is uniquely determined almost
everywhere.

From (3.1) one obtains

⋃
µ>c

⋂
λ<µ

T
(
{u > λ}

)
⊂ {Tu > c} ⊂ T

(
{u > c}

)
∀c > inf u.

(3.2)
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Since T is measure preserving, this means that

Ln
(
T ({u > c})

)
= Ln

(
{Tu > c}

)
∀c > inf u.(3.3)

Thus the function Tu also belongs to S. In this way we have constructed a mapping
T : S −→ S, which we call again a rearrangement.

In the special case that u is a characteristic function, i.e. u = χ(M), M ∈ M,
(3.1) simply reduces to

T
(
χ(M)

)
= χ(T (M)),(3.4)

which shows that every rearrangement for sets can be “reconstructed” from the
corresponding rearrangement for functions. The monotonicity of T for functions
reads as

u, v ∈ S, u ≤ v =⇒ Tu ≤ Tv ,(3.5)

from which we obtain the following property:

u ∈ S, ϕ nondecreasing =⇒ ϕ(u) ∈ S and ϕ(Tu) = T
(
ϕ(u)

)
.(3.6)

Further on it is well known (see e.g. [Ka1]) that one can deduce “Cavalieri’s prin-
ciple” from (3.3) and (3.5)∫

Rn

f(u) dx =
∫
Rn

f(Tu) dx ∀u ∈ S, ∀ continuous f,(3.7)

whenever either one of the integrals in (3.7) converges.
The following theorem (for a proof see [CZR, Theorem 3, Corollary 1]) will be

very useful for approximations of the rearranged functions:

Theorem 3.1 (Nonexpansivity of rearrangements). Let T be a rearrangement.
Then we have for every Young function j∫

Rn

j
(
|Tu− Tv|

)
dx ≤

∫
Rn

j
(
|u− v|

)
dx ∀u, v ∈ S,(3.8)

whenever either one of the integrals in (3.8) converges.

Remark 3.1. In the special case j(t) = tp, (1 ≤ p ≤ +∞), one concludes from (3.8)
the nonexpansivity in Lp(Rn)

‖Tu− Tv‖p ≤ ‖u− v‖p ∀u, v ∈ Lp+(Rn).(3.9)

Furthermore, (3.8) with p = 2 and (3.7) yield the well-known Hardy-Littlewood
inequality ∫

Rn

uv dx ≤
∫
Rn

TuTv dx ∀u, v ∈ L2
+(Rn).(3.10)

If u ∈ S, the distribution function mu is given by

mu(c) := Ln
(
{u > c}

)
, c > inf u.

Sometimes we will say that two functions u, v ∈ S are rearrangements of each other
if inf u = inf v and mu(c) = mv(c) ∀c > inf u.



1764 FRIEDEMANN BROCK AND ALEXANDER YU. SOLYNIN

Let us add definitions of some further properties of set transformations.
A set transformation T : A → B is called open or compact if G ⊂ A or F ⊂ A

and T (A) is open or compact whenever A is of the same kind, respectively. We say
that T is continuous from the inside if

⋃
i T (Gi) = T (

⋃
iGi) for every increasing

sequence {Gi} ⊂ G. Similarly we say that T is continuous from the outside if⋂
i T (Fi) = T (

⋂
i Fi) for every decreasing sequence {Fi} ⊂ F .

Finally a rearrangement T is called smoothing if

T (Fr) ⊃
(
T (F )

)
r

(3.11)

for every F ∈ F and r > 0.
Smoothing rearrangements were introduced by Sarvas [Sa].

Lemma 3.1. Let T be a rearrangement which is continuous from the inside and
let u ∈ C(Rn) ∩ S. Then

{Tu > c} = T
(
{u > c}

)
∀c > inf u.(3.12)

Proof. Let c > inf u. Since u is continuous, all the level sets {u > λ} with λ > inf u
are open. Together with the continuity from inside this yields

T
(
{u > c}

)
=
∞⋃
i=1

T
(
{u > c+

1
i
}
)
.(3.13)

Now let x ∈ T
(
{u > c}

)
. By (3.1) this means that Tu(x) ≥ c.

Assume first that Tu(x) = c. Then x cannot belong to any of the level sets
T
(
{u > λ}

)
, λ > c. But this impossible by (3.13).

It follows that Tu(x) > c. Thus we have proved that T
(
{u > c}

)
⊂ {Tu > c}.

Now the assertion follows in view of (3.2).

The next lemma was shown in [Sa].

Lemma 3.2. Let T be a monotone and smoothing set transformation which is
continuous from the inside and let (F ∪ G) ⊂ Dom T . Then T is open.

Lemma 3.3. Let T be a monotone and smoothing set transformation which is
continuous from the outside and let (F ∪ G) ⊂ Dom T . Then T is compact.

Proof. Let F ∈ F . By the continuity from the outside we have
⋂
i T (F(1/i)) = T (F ).

Since T is smoothing, we conclude that also
⋂
i(T (F )(1/i)) = T (F ). But this means

that T (F ) is compact.

Lemma 3.4. Let T be as in Lemma 3.3. Then

T (G+ rB1) ⊃ T (G) + rB1,(3.14)

T
(
G \ (∂G)r

)
⊂ T (G) \ (∂T (G))r ∀G ∈ G, r > 0,(3.15)

and

dist {M ; ∂N} ≤ dist {T (M); ∂T (N)} ∀M,N ∈ G with M ⊂ N.(3.16)
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Proof. Let us assume that G ∈ Gb. Then for r > ε > 0 we have

G+ rB1 ⊃ G(r−ε).

Since T is monotone and smoothing, this means that

T (G+ rB1) ⊃ T (G(r−ε)) ⊃
(
T (G)

)
(r−ε)

⊃ T (G) + (r − ε)B1.

By passing to the limit ε↘ 0, we derive (3.14) in this case.
If G is unbounded, we choose an increasing sequence {Gi} ⊂ Gb with

⋃∞
i=1 Gi =

G. Then by the monotonicity we have

T (G+ rB1) ⊃ T (Gi + rB1) ⊃ T (Gi) + rB1, i = 1, 2, . . . .

Since T is continuous from the inside, we can pass to the limit for i → +∞ and
obtain (3.14).

Next set r := dist {M ; ∂N}. Then by the monotonicity and (3.14) we conclude
that

T (N) ⊃ T (M + rB1) ⊃ T (M) + rB1,

which yields (3.16).
Finally, by setting N = G and M = G \ (∂G)r in (3.16), we derive

r ≤ dist {T
(
G \ (∂G)r

)
; ∂T (G)},

which is (3.15).

Because of the well-known Brunn-Minkowski inequality it is not surprising that
the smoothing property implies that the rearrangement transforms balls into balls.
More precisely the following holds.

Theorem 3.2. Let T be a smoothing rearrangement which is continuous from the
outside and from the inside. Then for each x0 ∈ Rn there is some y0 ∈ Rn such
that

T (Br(x0)) = Br(y0) and(3.17)

T (Br(x0)) = Br(y0) ∀r > 0.(3.18)

Proof. For G ∈ Gb we set δ(G) := sup{dist {x; ∂G} : x ∈ G}. Let x0 ∈ Rn and
R > 0 and assume that T (BR(x0)) is not a ball. Then we have δ(T (BR(x0))) < R−ε
for some ε > 0. It follows that

T
(
Bε(x0)

)
= T

(
BR(x0) \ (∂BR(x0))R−ε

)
⊂ T (BR(x0)) \

(
∂T (BR(x0))

)
R−ε

= ∅,

which contradicts the equimeasurability. Thus there is some y0 ∈ Rn, such that
T (BR(x0)) = BR(y0). Next let R > r > 0. Then, by (3.16), we have

dist{T (Br(x0));BR(x0)} ≥ R− r,
which is (3.17).

Finally (3.18) follows by approximation of Br(x0) with open balls and from the
fact that T is compact.

Theorem 3.3. Let T be a rearrangement which is continuous from the inside.
Then

T is smoothing ⇐⇒
ωTu ≤ ωu ∀u ∈ C(Rn) ∩ S.(3.19)
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Proof. 1) Let T be smoothing. By Lemma 3.3 all the level sets {Tu > c}, c > inf u,
are open. Applying (3.16) leads to

0<dist
{
{u>c2}; ∂{u > c1}

}
≤ dist

{
{Tu > c2}; ∂{Tu > c1}

}
∀c2 > c1 > inf u,

(3.20)

which means that Tu is continuous.
Now let δ > 0. There are points x1, x2 with |x1 − x2| = δ and

ωTu(δ) = |Tu(x1)− Tu(x2)|.
We can assume that Tu(x1) = c1 < c2 = Tu(x2). Then xi ∈ ∂{Tu > ci}, i = 1, 2,
and thus dist

{
{Tu > c2}; ∂{Tu > c1}

}
= δ. Now from (3.16) we conclude that

δ ≤ dist
{
{u > c2}; ∂{u > c1}

}
, which means that ωu(δ) ≥ c2 − c1 = ωTu(δ).

2) Now assume that T satisfies (3.19). Let F ∈ F , r > 0 and set

u(x) :=
{
r − dist {x;F} if x ∈ Fr,
0 if x ∈ Rn \ Fr .

Then clearly u ∈ C(Rn) ∩ S and

r = ωu(r) ≥ ωTu(r).

In view of F = {u = r}, Fr = supp u, TF = {Tu = r} and T (Fr) = supp Tu
this implies that

dist {TF ; ∂T (Fr)} ≥ r,
and the assertion follows.

Corollary 3.1. Let T be a smoothing rearrangement which is continuous from the
inside and let u ∈ C(Rn) ∩ S satisfy a Hölder condition with exponent α ∈ (0,+1]
and constant L, i.e.

|u(x)− u(y)| ≤ L|x− y|α ∀x, y ∈ Rn.(3.21)

Then Tu also satisfies a Hölder condition with exponent α and constant less than
or equal to L.

4. Steiner symmetrizations

Let us now recall the definitions of the Steiner symmetrizations (for further
information see [St],[L] and [Sa]).

Every (n − k)-dimensional plane Σ ⊂ Rn, 1 ≤ k ≤ n, defines a (k, n)-Steiner
symmetrization S as follows:
For every x ∈ Σ let Λ(x) denote the k-dimensional plane through x and orthogonal
to Σ.

1) Let M ∈ (F∪G)∩M. If Lk(M∩Λ(x)) = 0, then S(M)∩Λ(x) is empty or the
point {x} according to whether M ∩Λ(x) is empty or nonempty. If Lk(M∩Λ(x)) >
0, then

S(M) ∩ Λ(x) =
{
Br(x) ∩ Λ(x) if M is open,
Br(x) ∩ Λ(x) if M is compact,

(4.1)

where r is defined by r > 0 and Lk(Br(x) ∩ Λ(x)) = Lk(M ∩ Λ(x)).
2) Let M ∈ M but be neither open nor compact. Then the sets S(M) ∩ Λ(x)

are defined in a.e. sense by either one of (4.1).
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From the definition one deduces immediately that the (k, n)- Steiner symmetriza-
tion is a rearrangement which is continuous from the inside and from the outside.
Note also that in case 2) Fubini’s Theorem implies that the sets M ∩ Λ(x) are
measurable with finite Lk-measure for a.e. x ∈ Σ.

The (n, n)-Steiner symmetrization is often called Schwarz symmetrization or
symmetric decreasing rearrangement, and we will denote it by S?.

For our purposes it will often be helpful to use a special coordinate system in
Rn:

x = (x1, . . . , xn) = (x′, y), x′ = (x1, . . . , xn−k), y = (xn−k+1, . . . , xn),

in which the plane Σ of symmetry becomes simply {y = 0}. If M ∈ M, we
introduce the “x′- slices” of M by

M(x′) = {y ∈ Rk : (x′, y) ∈M}, x′ ∈ Rn−k.

Let S?(M(x′)) denote the Schwarz symmetrization of M(x′), taken in Rk. Then
(4.1) reads

S(M) := {x = (x′, y) : y ∈ S?
(
M(x′)

)
, x′ ∈ Rn−k}.(4.2)

If u ∈ S, then we obtain from (4.1) that the (k, n)-Steiner symmetrization Su of u
is given by the relations

Su(x′, y) = sup
{
c > inf u : x ∈ S

(
{u(x′, ·) > c}

)}
.(4.3)

(Here and in the following for simplicity {u(x′, ·) > c} denotes {y ∈ Rk : u(x′, y) >
c}.)

Let us mention again that the equations (4.2) and (4.3) have to be understood
in the pointwise sense iff u is continuous. Note also that Su is “radially symmetric
and decreasing in |y|”, i.e.

Su(x′, y) = Su(x′, z1) ≥Su(x′, z2)

if |y| = |z1| ≤ |z2|, x′ ∈ Rn−k, y, z1, z2 ∈ Rk.
(4.4)

Sometimes we will also write S(M) = M∗ and Su = u∗ for the symmetrized objects.

5. Polarization

Let Σ be some (n− 1)-dimensional affine hyperplane in Rn and assume that H
is one of the open halfspaces into which Rn is subdivided by Σ. Let σH denote the
reflection in Σ. We write x = σH(x) for points x ∈ Rn and σH(u)(x) = u(x) ∀x ∈
Rn for functions u ∈ S.

Definition 5.1. If u ∈ S, then its polarization Pu (with respect to H) is given by

Pu(x) :=
{

max{u(x); u(x)} if x ∈ H,
min{u(x); u(x)} if x ∈ Rn \H.(5.1)

If M ∈ M, then the polarization P (M) is given by its characteristic function via
(5.1), i.e.

χ(P (M)) := P
(
χ(M)

)
.(5.2)
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In the case that u is continuous and M is open or closed, equations (5.1) and
(5.2) have to be understood in the pointwise sense.

Equations (5.1) and (5.2) could also be written in the following more precise
form

P (M) =
(

(M ∪ σH(M)) ∩H
)
∪
(
M ∩ σH(M)

)
, M ∈M,(5.3)

and

Pu(x) = sup
{
c > inf u : x ∈ P

(
{u > c}

)}
, x ∈ Rn, u ∈ S.(5.4)

From the representations (5.1)–(5.4) we see that the polarization P is an open and
compact rearrangement which is continuous from the inside and from the outside.

For the sake of simplicity, we will often use the subscript “H” to denote any one
of the polarized objects, i.e. we write uH and MH for Pu and P (M), respectively.

The following lemma was proved in [Bae2, p.58]. (For a proof of a similar
property in the case of the sphere Sn compare also [BT, Lemma 1]). Together with
Theorem 3.3 it shows that polarization is a smoothing rearrangement.

Lemma 5.1. Let u ∈ C(Rn) ∩ S and let uH be some polarization of u. Then

ωuH ≤ ωu.(5.5)

The following lemma shows that the polarization depends continuously on its
defining halfspace (see also [Br]).

Lemma 5.2. Let u ∈ Lp+(Rn), (1 ≤ p < +∞), and let {Hm} be a sequence of
halfspaces.

1) If H is a halfspace and

lim
m→∞

Ln
(

(Hm∆H) ∩BR
)

= 0 ∀R > 0,(5.6)

then

uHm −→ uH in Lp(Rn).(5.7)

2) If BRm ⊂ Hm, m = 1, 2, . . . , for some sequence Rm ↗ +∞, then

uHm −→ u in Lp(Rn).(5.8)

Proof. 1) By (5.6) we have

lim
m→∞

σHm(x) = σH(x), uniformly in compact subsets of Rn.

This leads to (5.7) in case that u is continuous with compact support.
In the general case let ε > 0. We choose a continuous function v with compact

support such that ‖u− v‖p < ε/3, and then m0 large enough such that

‖vHm − vH‖p <
ε

3
∀m ≥ m0.

Applying Lemma 3.1 we obtain

‖uHm − uH‖p ≤ ‖uHm − vHm‖p + ‖vHm − vH‖p + ‖vH − uH‖p
≤ 2‖u− v‖p + ‖vHm − vH‖p < ε ∀m ≥ m0,

and (5.7) follows.
2) If u has bounded support, there is some m0 ∈ N such that

uHm = u ∀m ≥ m0.

In the general case we argue similarly as in part 1) to derive (5.8).
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It was observed by Dubinin [Du1]–[Du3] that certain capacities decrease under
polarization because the Dirichlet norms ‖∇u‖p do not change under polarization
if the competing functions are sufficiently smooth. The following lemma shows that
this property remains true even in Sobolev-spaces W 1,p(Rn).

Lemma 5.3. Let u ∈W 1,p
+ (Rn) (1 ≤ p ≤ +∞), and let H be some halfspace. Then

uH ∈ W 1,p
+ (Rn) and |∇u| and |∇uH | are rearrangements of each other. Further-

more, if ~n is the unit normal to the hyperplane ∂H, V is some linear subspace,
which either contains ~n or is orthogonal to ~n , and ∇V is the gradient with respect
to V , then |∇V u| and |∇V uH | are rearrangements of each other too. In particular
we have

‖∇uH‖p = ‖∇u‖p(5.9)

and

‖∇V (uH)‖p = ‖∇V u‖p.(5.10)

Proof. We set
v(x) := u(x), w(x) := uH(x), x ∈ H.

Since uH(x)=max{u(x); v(x)}=v(x)+
(
u(x)− v(x)

)
+

and w(x)=min{u(x); v(x)}
= u(x)−

(
u(x)− v(x)

)
+

for all x ∈ H , we can conclude (compare [GT, Lemma 7.6,
p.152]) that uH , w ∈ W 1,1(H) and

∇uH(x) =
{
∇u(x) a.e. on {u > v} ∩H,
∇v(x) a.e. on {u ≤ v} ∩H,

∇w(x) =
{
∇v(x) a.e. on {u > v} ∩H,
∇u(x) a.e. on {u ≤ v} ∩H.

From these formulas the assertions follow immediately.

Corollary 5.1. Let Ω ⊂ Rn be an open set, let H be a halfspace and u ∈ W 1,p
0+ (Ω)

(1 ≤ p < +∞). Then we have uH ∈W 1,p
0+ (ΩH) and (5.9), (5.10) hold.

Proof. The formulas (5.9) and (5.10) follow from Lemma 5.3 by extending u by
zero outside Ω. It remains to show that uH ∈W 1,p

0 (ΩH).
Assume that u ∈ C0,1

0+ (Ω). In view of Lemma 5.1 and Theorem 3.3 this means
that uH ∈ C0,1

0+ (ΩH).
In the general case we choose a sequence um of functions in C0,1

0+ (Ω) which
converges to u inW 1,p

0 (Ω). Then (um)H → uH in L2(ΩH). The functions (um)H are
equibounded in W 1,p

0 (ΩH) by Lemma 5.3. Hence we find a function v ∈ W 1,p
0 (ΩH)

and a subsequence (um′)H which converges to v weakly in W 1,p
0 (ΩH). This means

that for every ϕ ∈ C∞0 (ΩH) and i ∈ {1, . . . , n}∫
ΩH

ϕvxi dx ←−
∫

ΩH

ϕ
∂((um′)H)

∂xi
dx

= −
∫

ΩH

ϕxi(um′)H dx −→ −
∫

ΩH

ϕxiuH dx,

that is, v = uH . The corollary is proved.
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Lemma 5.3 has some easy consequences in symmetry problems.
Consider a variational problem of the following form:

(P) J(v) ≡
∫
Ω

( 1
p
|∇v|p − F (x, v)

)
dx −→ Min !, v ∈ K,

(5.11)

where Ω is a bounded domain in Rn, K is a closed subset ofW 1,p
0 (Ω), (1 < p < +∞),

and F = F (x,w) is defined on Ω×R, bounded and measurable in x for a.e. w ∈ R
and continuous in w.

We shall not discuss the existence and uniqueness of solutions to problem (P).
We are interested in symmetry properties of the minimizers under the assumption
that the problem has a unique positive solution.

Remark 5.1. 1) Positive minimizers of problems like (P) may describe stable
(ground) states of equilibria in plasma physics, heat conduction and chemical reac-
tors (see e.g. [Di, section 4]).

2) Let us briefly recall the connection to boundary value problems in some well-
known special cases.

a) If K = W 1,p
0 (Ω) and F (x,w) is differentiable in w, then a minimizer u of (P)

is a weak solution of the boundary value problem

u ∈W 1,p
0 (Ω), −∇

(
|∇u|p−2∇u

)
= Fu(x, u) in Ω.(5.12)

b) If K = W 1,p
0 (Ω) and F (x,w) is concave in w, then a minimizer u of (P) is a

weak solution of the following differential inclusion:

u ∈W 1,p
0 (Ω), −∇

(
|∇u|p−2∇u

)
∈ f(x, u) in Ω,(5.13)

where f denotes the maximal monotone graph of (∂F )/(∂w), i.e.

f(x,w) := [lim inf
v→w

F (x, v) − F (x,w)
v − w , lim sup

v→w

F (x, v) − F (x,w)
v − w ], x ∈ Ω, w ∈ R.

Theorem 5.1. Let K ⊂ W 1,p
0+ (Ω) and let problem (P) have a unique minimizer

u. Assume that, if v, w ∈ W 1,p
0+ (Ω), v ∈ K, and v, w are rearrangements of each

other, then we have also w ∈ K. Furthermore assume that there is some halfspace
H such that Ω = ΩH and

F (x, v)− F (x, v) ≤ F (x,w) − F (x,w), if 0 ≤ v ≤ w, x ∈ Ω ∩H.
(5.14)

Then

u = uH .(5.15)

Proof. By (5.14) we have

F (x, uH(x)) + F (x, uH(x)) ≥ F (x, u(x)) + F (x, u(x)) ∀x ∈ Ω ∩H.
By integrating this inequality over Ω∩H and then taking Lemma 5.3 into account,
we conclude immediately.

At this place let us refer to one simple geometric observation which motivates
our approach in the next sections.
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If a function u is equal to its polarization uH for a whole continuum of halfspaces
H , then u satisfies some monotonicity (or even symmetry) properties. In particular
one can identify “symmetrized” functions in this way (see Lemma 6.3).

Next we will study situations in which we can obtain symmetries of the solutions
of (P) by using Theorem 5.1.

We fix a decomposition Rn 3 x = (x′, y), y ∈ R. Let Ht denote the halfspace
{y > t}, t ∈ R, and let “∗” denote the (1, n)-Steiner symmetrization with respect
to {y = 0}.
Corollary 5.2. Let Ω,K, u as in Theorem 5.1. We consider two cases.

1) Suppose that (i) and (ii) hold.
(i) There is a number t ∈ R, such that Ω = ΩHs ∀s ≤ t;
(ii) for all numbers v, w with 0 ≤ v ≤ w, the function ϕ(x) := F (x,w) −

F (x, v), x ∈ Ω, is monotonically nondecreasing in y for y ≤ t, and condi-
tion (5.14) is satisfied with H = Ht.

Then u is monotonically nondecreasing in y for y ≤ t and u = uHt.
2) Let Ω = Ω∗ and assume that for all numbers v, w with 0 ≤ v ≤ w, the

function ϕ(x) defined in 1) is monotonically nondecreasing in y for y ≤ 0 and
condition (5.14) is satisfied with the equality sign for H = H0. Then u = u∗.

Proof. 1) By applying Theorem 5.1 we have that

u = uHs ∀s ≤ t,
from which we easily obtain the first assertion.

2) In view of the assumption we conclude that J(u) = J(σH0 (u)). By uniqueness
this means that u = σH0 (u), and the second assertion follows by applying part
1).

Remark 5.2. 1) Some special cases of Corollary 5.2 are well-known if F (x,w) is
differentiable in w or is independent of x (see e.g. [Ka1, p. 78 ff.]). If F is
differentiable in w, then the second condition (ii) in part 1) means that

∂F
∂w (x′, y, w) is monotonically nondecreasing in y and
∂F
∂w (x′, y, w) ≤ ∂F

∂w (x′, 2t− y, w) ∀(x′, y) ∈ Ω with y ≤ t, ∀w ∈ R+
0 ,

(5.16)

and part 2) can equivalently be written as

Ω = Ω∗ and ∂F
∂w (x′, y, w) is symmetric in y and monotonically nondecreasing

in y for y ≤ 0, (x′, y, w) ∈ Ω× R+
0 .

(5.17)

2) If p = 2 and ∂F
∂w (x,w) is Lipschitz continuous in w, then one can prove the

same symmetry results as in Theorem 5.1 and Corollary 5.2, even in the case that
u is no longer a minimizer of (P), but is only a positive weak solution of the
problem (5.12). The proof which then establishes the symmetry is based on the
so-called moving plane method. (For important references we mention the papers
[GNN],[BN] and [Da], where many related symmetry results were obtained.)

Remark 5.3. Let n = 2, M = {x = (x1, x2) : x1 ∈ [0, 1], x2 ∈ [−2,−1] ∪ [0, 1]}
and H be the halfspace {x2 > −1}. Then MH = [0, 1] × [−1,+1]. This example
shows that the polarization may decrease the surface area of compact sets with
sufficiently smooth boundary.



1772 FRIEDEMANN BROCK AND ALEXANDER YU. SOLYNIN

Now recall that the characteristic functions of smooth sets are in BV (Rn). (To
be more precise, smooth sets M are those for which ∂M is a smooth manifold of
codimension 1 and M lies only on one side of the boundary (see [Ta3, p. 84]).)

This means that an analogue of the norm equality in Sobolev spaces (5.9) cannot
hold for BV -functions.

Lemma 5.4. Let u ∈ BV (Rn) ∩ L1
+(Rn) and let uH be some polarization of u.

Then uH ∈ BV (Rn) and

‖DuH‖BV ≤ ‖Du‖BV .(5.18)

Proof. We choose a sequence of functions um ∈ W 1,1
+ (Rn) which converges to u

in BV (Rn). By Lemma 5.3 the functions (um)H are equibounded in W 1,1(Rn).
Therefore there are some function v ∈ BV (Rn) and a subsequence um′ such that

(um′)H ⇀ v weakly in BV (Rn).

On the other hand from the inequalities

‖(um)H − uH‖1 ≤ ‖um − u‖1
we conclude that

(um)H −→ uH in L1(Rn).

Now let µi denote the Radon-measure which is associated with the weak partial
derivative vxi (i = 1, . . . , n). Then we have for every ϕ ∈ C∞0 (Rn)∫

Rn
ϕ dµi ←−

∫
Rn
ϕ
∂(um′)H
∂xi

dx

= −
∫
Rn
ϕxi(um′)H dx −→ −

∫
Rn
ϕxiuH dx,

which means that v = uH .
Finally the weak lower semi-continuity of the norm gives

‖DuH‖BV ≤ lim inf ‖∇(um)H‖1 = lim ‖∇um‖1 = ‖Du‖BV .

Corollary 5.3. The perimeter (in the sense of De Giorgi) of a Caccioppoli set in
Rn decreases under polarization, i.e.:

‖Dχ(EH)‖BV ≤ ‖Dχ(E)‖BV ∀ Caccioppoli sets E ⊂ Rn.(5.19)

6. Approximation of symmetrization of functions

We show here that every (k, n)-Steiner symmetrization, 1 ≤ k ≤ n, can be ap-
proximated in Lp(Rn), 1 ≤ p < +∞, and in C(Rn) by a sequence of polarizations.
Let us mention that any k-dimensional Steiner symmetrization of sets can be ap-
proximated by a sequence of (k − 1)-dimensional ones (see [Sa] for compacts and
[BLL] for measurable sets).

A central role in the approach is played by the following

Lemma 6.1. Let u ∈ Lp+(Rn) (1 ≤ p < +∞), let Pm be polarizations with cor-
responding halfspaces Hm and um = ©m

i=1Piu, and assume that 0 ∈ Hm, m =
1, 2, . . . . Then the sequence {um} is conditionally compact in Lp(Rn).
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Proof. 1) Since ‖u‖p = ‖um‖p, m = 1, 2, . . . , the functions um are equibounded in
Lp(Rn).

2) Let R > 0, m ∈ N. Since Pm(BR) = BR, we obtain by (3.10)∫
BR

|um|p dx ≤
∫
BR

|Pm+1(um)|p(x) dx =
∫
BR

|um+1|p dx.

This means that

lim
R→+∞

∫
Rn\BR

|um|p dx = 0 uniformly in m ∈ N.(6.1)

3) Let v ∈ C0,1
0+ (Rn), h ∈ Rn. If vH is any polarization of v, we infer from

Lemma 5.3 that vH ∈ C0,1
0+ (Rn) and

‖vH(·+ h)− vH(·)‖p ≤ |h|‖∇vH‖p = |h|‖∇v‖p.(6.2)

Now for a given ε > 0 we choose v ∈ C0,1
0+ (Rn) with

‖u− v‖p <
ε

3
,

and then h ∈ Rn with
|h| < ε

3‖∇v‖p
.

Setting vm :=©m
i=1Pm(v), m = 1, 2, . . . , and then applying (6.2) and (3.9) induc-

tively, we conclude

‖um(·+ h)− um(·)‖p ≤ ‖vm(·+ h)− vm(·)‖p + 2‖um − vm‖p
≤ ‖∇v‖p|h|+ 2‖u− v‖p < ε.

This means that

lim
|h|→0

‖um(·+ h)− um(·)‖p = 0 uniformly in m ∈ N.(6.3)

Now the assertion follows from 1),(6.1),(6.3) and a well-known compactness-
criterion in Lp(Rn) (see [DS, Theorem 8.21]).

A compactness result analogous to Lemma 6.1 holds in the space of continuous
functions. A similar observation was made by Baernstein and Taylor in a proof
of a convolution-type inequality for a spherical symmetrization [BT, p.252 ff.] and
variants of it appeared in some other papers (see e.g. [Be], [Bae2]).

Lemma 6.2. Let u ∈ C(Rn) ∩ S+, and let {um} be a sequence of polarizations
of u as in Lemma 6.1. Then there are a subsequence {um′} and a function v ∈
C(Rn) ∩ S+ such that

um′ −→ v in C(Rn)(6.4)

and

ωv ≤ ωu.(6.5)

Proof. Since ‖u‖∞ = ‖um‖∞, the functions um are equibounded. From Lemma
4.1 we see that ωum ≤ ωu, that is, the functions um are also equicontinuous. The
assertion then follows by Arzela’s Theorem.
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From now on until the end of section 7 let ∗ denote any (k, n)-Steiner-symmetri-
zation (1 ≤ k ≤ n). Let Σ be the symmetry plane of ”∗”, let H denote the set of all
halfspaces H for which the normal to ∂H is orthogonal to Σ and let H0 be the set
of all halfspaces in H containing Σ. Sometimes we will choose a coordinate system
Rn 3 x = (x, y), y ∈ Rk, in which Σ takes the form {y = 0}.

The next lemma shows how one can identify symmetric situations with the aid
of polarizations. Equations (6.6)–(6.9) below follow easily from the definition of
polarization and from the “radial symmetry” of symmetrized sets and functions in
slices (see property (4.4)).

Lemma 6.3. Let M ∈ M and u ∈ S. Then

M∗ = (MH)∗ and u∗ = (uH)∗ ∀H ∈ H,(6.6)
M∗ = (M∗)H and u∗ = (u∗)H ∀H ∈ H0,(6.7)

and
M = M∗ ⇐⇒ M = MH ∀H ∈ H0 and
u = u∗ ⇐⇒ u = uH ∀H ∈ H0.

(6.8)

Furthermore, if M̃ , ũ denote any translates of M , respectively u, in a direction
orthogonal to Σ, then

M̃ = M∗ ⇐⇒ M = MH or σH(M) = MH ∀H ∈ H and
ũ = u∗ ⇐⇒ u = uH or σH(u) = uH ∀H ∈ H.

(6.9)

The next lemma is crucial for the approximation of symmetrized functions.

Lemma 6.4. Let u ∈ Lp+(Rn) (1 ≤ p < +∞), and assume that u 6= u∗. Then there
is some halfspace H ∈ H0 such that

‖uH − u∗‖p < ‖u− u∗‖p.(6.10)

Proof. We follow the ideas of [BT, p.252 ff.].
Let H ∈ H0. Then by (6.7) we have (u∗)H = u∗, and by a partition into cases

we can verify that

|uH(x) − u∗(x)|p + |uH(x)− u∗(x)|p ≤ |u(x)− u∗(x)|p + |u(x)− u∗(x)|p

∀x ∈ H.(6.11)

An integration of (6.11) over H yields

‖uH − u∗‖p ≤ ‖u− u∗‖p.
Therefore to prove (6.10) it suffices to show that for a suitable choice of H ∈ H0

the inequality (6.11) becomes strict on a subset of H of positive measure.
Since u 6= u∗, we find some number c > 0 such that

Ln
(
{u > c}∆{u∗ > c}

)
> 0.

By the equimeasurability we have Ln({u > c}) = Ln({u∗ > c}). We consider two
cases

(i) k = n.
Let x1 and x2 be density points of the sets {u > c}\{u∗ > c} and {u∗ > c}\{u >

c}, respectively. Then we can choose a halfspace H such that x1 = x2 and x2 ∈ H .
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(Note that from u∗(x1) ≤ c < u∗(x2) it follows that 0 ∈ H and thus H ∈ H0 !)
Hence there is a subset N of H of positive measure (which contains x2 !) such that

u∗(x) > c ≥ u(x), u∗(x) ≤ c < u(x) ∀x ∈ N.(6.12)

But this means that the inequality (6.11) becomes strict on the set N , q.e.d.
(ii) 1 ≤ k ≤ n− 1.
Setting

M :=
{
x′ ∈ Rn−k : Lk

(
{u(x′, ·) > c}∆{u∗(x′, ·) > c)}

)
> 0
}
,

we see that Ln−k(M) > 0. Let x′0 be a density point of M . Then

Lk
(
{u(x′0, ·) > c} \ {u∗(x′0, ·) > c}

)
= Lk

(
{u∗(x′0, ·) > c} \ {u(x′0, ·) > c}

)
> 0.

On the other hand, let y1 and y2 be density points of the sets {u(x′0, ·) > c} \
{u∗(x′0, ·) > c} and {u∗(x′0, ·) > c} \ {u(x′0, ·) > c}, respectively. There is exactly
one halfspace H for which (x′0, y2) ∈ H and (x′0, y1) = (x′0, y2). Then clearly
H ∈ H0, and there is again some subset N of H with positive measure (containing
(x′0, y2) !) such that the relations (6.12) are satisfied, and we conclude as before.

Theorem 6.1. Let u ∈ Lp+(Rn) (1 ≤ p < +∞), let Pm be polarizations with
corresponding halfspaces Hm ∈ H0 and let um :=©m

i=1Piu, m = 1, 2, . . . . Further
let the Hm’s be chosen in such a way that

‖um+1 − u∗‖p = min
{
‖(um)H − u∗‖p : H ∈ H0

}
,(6.13)

m = 0, 1, . . . , u0 := u.

Then

um −→ u∗ in Lp(Rn).(6.14)

Proof. First observe that in view of Lemma 5.2 the minimum in (6.13) is indeed
attained for some halfspace Hm+1 ∈ H0. Then by Lemma 6.1 there are some
function v ∈ Lp+(Rn) and a subsequence um′ such that:

um′ −→ v in Lp(Rn),

and in view of Lemma 3.1 we have v∗ = u∗. Now assume that v 6= u∗. By Lemma
6.4 we can choose a hyperplane such that

‖vH − u∗‖p < ‖v − u∗‖p.
It follows that

‖(um′)H − u∗‖p − ‖um′ − u∗‖p
(6.15)

≤ ‖(um′)H − vH‖p + ‖vH − u∗‖p + ‖um′ − v‖p − ‖v − u∗‖p
≤ 2‖um′ − v‖p + ‖vH − u∗‖p − ‖v − u∗‖p
−→ ‖vH − u∗‖p − ‖v − u∗‖p < 0 as m′ → +∞.

On the other hand the sequence ‖um − u∗‖p is monotonically decreasing; hence

‖um+1 − u∗‖p − ‖um − u∗‖p −→ 0 as m→ +∞.
Together with (6.15) this contradicts the minimality property (6.13).
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Theorem 6.2. Let u ∈ C(Rn) ∩L1
+(Rn) and let the functions um be defined as in

Lemma 6.5, whereby the condition (6.13) is satisfied with p = 1. Then

um −→ u∗ in C(Rn).(6.16)

Proof. By the previous lemma we have

um −→ u∗ in L1(Rn),

and the functions um are equicontinuous in view of Lemma 4.1. Because of Lemma
6.2 we have also

um′ −→ v in C(Rn)
for a subsequence um′ and ωv ≤ ωu. Thus v = u∗ and the assertion follows.

Corollary 6.1. Let u ∈ C(Rn) ∩ S+. Then

ωu∗ ≤ ωu .(6.17)

Proof. If u ∈ L1(Rn), then (6.17) follows by the above proof. In the general case
we choose a sequence um of functions in C(Rn)∩L1

+(Rn) converging to u in C(Rn).
Then by (3.9) we have

‖(um)∗ − u∗‖∞ ≤ ‖um − u‖∞, m = 1, 2, . . . ,

and the assertion follows.

Remark 6.1. Lemma 3.7 and Corollary 6.1 show that all (k, n)-Steiner symmetriza-
tions, 1 ≤ k ≤ n, are smoothing. By Lemma 3.3 and 3.4 this means that they are
also open and compact.

As a byproduct we get a special case of the well-known Brunn-Minkowski in-
equality in Rn (see e.g. [Ha, p.174 ff.]). We will not discuss the equality sign in
(6.18) below, a question which was completely solved in various ways (see e.g. [Ha],
[BuZ] and [Sch]).

Theorem 6.3. Let F ∈ F and r > 0. Then

Ln(Fr) ≥ Ln((F ?)r).(6.18)

7. Approximation of symmetrization of sets

The comparison theorems for symmetrizations from section 10 need some
stronger convergence results than Lemmata 6.5, 6.6 for domains. Therefore we
shall investigate the convergence of sequences of polarizations of open and compact
sets in the Hausdorff metric. (Note that in fact we will exploit later only the second
assertion (7.2) of Lemma 7.1 below.)

Lemma 7.1. Let G,G′ ∈ Gb with G′ b G. Then there exist polarizations Pi with
corresponding halfspaces Hi ∈ H0, i = 1, . . . ,m0, such that

©m0
i=1Pi(G) c (G′)∗ and(7.1)

©m0
i=1Pi(G

′) b G∗.(7.2)

Proof. We choose a function u ∈ C(Rn) ∩ S+ satisfying

supp u ⊂ G, 0 ≤ u ≤ 1 in G \G′ and u > 1 in G′.(7.3)

By Lemma 6.6 there are polarizations Pi with corresponding halfspaces Hi ∈
H0, i = 1, 2, . . . , such that

©m
i=1 Pi u =: um −→ u∗ in C(Rn).(7.4)
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By setting Gm := ©m
i=1Pi(G) and (G′)m := ©m

i=1Pi(G
′), m = 1, 2, . . . , we derive

from (7.3) that

supp u∗ ⊂ G∗, 0 ≤ u∗ ≤ 1 in G∗ \ (G′)∗, u∗ > 1 in (G′)∗ and
supp um ⊂ Gm, 0 ≤ um ≤ 1 in Gm \ (G′)m,

um>1 in (G′)m,m = 1, 2, . . ..

(7.5)

We infer from (7.4) and (7.5) that for sufficiently large m (say m ≥ m0)

um > (1/2) in (G′)∗ and um < (1/2) in Rn \G∗,
which implies that

Gm ⊃ supp um ⊃ (G′)∗ and (G′)m ⊂ (G′)m ⊂ G∗ ∀m ≥ m0.

Lemma 7.2. Let F ∈ F . Then there are polarizations Pi with corresponding half-
spaces Hi ∈ H0, i = 1, 2, . . . , such that

lim
m→∞

d
(
©m
i=1 Pi(F ), F ∗

)
= 0.(7.6)

Proof. We introduce a function u by

u(x) :=
{

1− dist {x; F} if x ∈ (F +B1),
0 if x ∈ Rn \ (F +B1).

By Lemma 6.6 there are polarizations Pi with corresponding halfspaces Hi ∈
H0, i = 1, 2, . . . , such that

©m
i=1 Pi u =: um −→ u∗ in C(Rn).(7.7)

We set Fm := ©m
i=1Pi(F ), m = 1, 2, . . . . Then (7.6) can equivalently be written

as

inf{r > 0 : Fm ⊂ (F ∗)r} −→ 0 and(7.8)
inf{r > 0 : F ∗ ⊂ (Fm)r} −→ 0 as m→∞.(7.9)

It remains to prove (7.8) and (7.9).
1) First assume that (7.8) is not true. Then there are some r ∈ (0, 1) and points

xm ∈ Fm \ (F ∗)r, m = 1, 2, . . . . We can assume that xm → x and x 6∈ (F ∗)(r/2).
Since um = 1 in Fm, m = 1, 2, . . . , and u∗ < 1 − ε in Rn \ (F ∗)(r/2) for some
ε > 0, we conclude that

|um(xm)− u∗(xm)| > (ε/2) ∀ large enough m,

which contradicts (7.7).
2) Next assume that (7.9) is not true. Then there are some r ∈ (0, 1) and points

xm ∈ F ∗ \ (Fm)r, m = 1, 2, . . . . We can assume that xm → x0 = (x′0, y0) ∈ F ∗. If
m is large enough (say m ≥ m0), we have

Br/2(x0) ∩ Fm = ∅.(7.10)

Now we study the situation on the hyperplane {x′ = x′0}. Recall that

Lk(F (x′0)) = Lk(F ∗(x′0)) = Lk(Fm(x′0)), m = 1, 2, . . . , and
F ∗(x′0) is a ball in Rk which is centered in the origin.

(7.11)

Two cases (i) and (ii) are possible.
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(i) Lk
(
F ∗(x′0)

)
= 0. Then F ∗(x′0) = {0} by (7.11), and in view of (7.10) there

are points ỹm ∈ Fm(x′0) with |ỹm| > r/2.
(ii) Lk

(
F ∗(x′0)

)
> 0. Then Lk

({
y ∈ Rk : |y − y0| < r/2

}
∩ F ∗(x′0)

)
> 0.

By (7.10) and (7.11) this means that there are some number δ1 > 0 and points
ỹm ∈ Fm(x′0) with dist {ỹm;F ∗(x′0)} ≥ δ1.

Thus, by setting δ2 := min{r/2; δ1}, in both cases (i) and (ii) we find points
ỹm ∈ Fm(x′0) with

dist {ỹm;F ∗(x′0)} ≥ δ2.(7.12)

In view of (7.11) F ∗ has a representation

F ∗ = {(x′, y) : |y| ≤ Lk(F (x′)), x′ ∈ F ′},
where F ′ is some compact in Rn−k and Lk(F (x′)) is upper semicontinuous. Hence
by setting x̃m := (x′0, ỹm), we see from (7.12) that there is some number δ > 0 such
that

dist {x̃m;F ∗} > δ ∀m ≥ m0.

Thus we have um(x̃m) = 1 and u∗(x̃m) < 1− ε̃ for some ε̃ > 0. By arguing similarly
as in part 1) we obtain a contradiction to (7.7). The lemma is proved.

8. Integral inequalities for symmetrizations

Using the approach of section 5 we can derive many well-known integral inequal-
ities in the theory of symmetrizations.

The idea is the same in all cases: First one proves an analogous inequality where
the symmetrizations of functions are replaced by some polarizations. In most cases
this proof will be much simpler. (Sometimes the integral inequality can be further
reduced to a pointwise one for the integrands (see e.g. Lemma 8.1 below).)

After that one approximates the symmetrized function by sequences of polariza-
tions. Together with some convergence properties of the integrals this leads to the
final inequality.

To illustrate the method, we state now two well-known convolution-type inequal-
ities in Rn (see [Be, p.4818] and [Bae2, Corollary 2]). Note that these inequalities
are proved for the special case j(z) = z2 in [BT, Lemma 1], and they hold true
also for the sphere Sn and the hyperbolic space Hn. We present them in a slightly
generalized form.

Lemma 8.1. Let H ∈ H, let u, v, w ∈ S+ with w = w∗ and let j be a Young
function. Then

∫ ∫
R2n

j
(
|u(x)− v(y)|

)
w(x − y) dxdy ≥

∫ ∫
R2n

j
(
|uH(x) − vH(y)|

)
w(x − y) dxdy,

(8.1)

if the left-hand side in (8.1) converges.

Proof. We use the notations of section 5. Let x, y ∈ H . Since j is convex, it follows
from elementary analysis that

j(|u(x)− v(y)|) + j(|u(x)− v(y)|) ≥ j(|uH(x)− vH(y)|) + j(|uH(x) − vH(y)|).
(8.2)
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In view of w = w∗ and the assumption on H we have

w(x − y) = w(x − y) ≥ w(x − y) = w(x − y).

Together with (8.2) this leads to the inequality

j(|u(x)− v(y)|)w(x − y) + j(|u(x)− v(y)|)w(x − y)

+ j(|u(x)− v(y)|)w(x − y) + j(|u(x)− v(y)|)w(x − y)

≥ j(|uH(x)− vH(y)|)w(x − y) + j(|uH(x)− vH(y)|)w(x − y)

+ j(|uH(x) − vH(y)|)w(x − y) + j(|uH(x)− vH(y)|)w(x − y).

Then an integration over H ×H yields (8.1).

Lemma 8.2. Let u, v, w ∈ S+ with w = w∗ and let j be a Young- function. Then

∫ ∫
R2n

j
(
|u(x)− v(y)|

)
w(x − y) dxdy ≥

∫ ∫
R2n

j
(
|u∗(x) − v∗(y)|

)
w(x − y) dxdy,

(8.3)

provided the left-hand side in (8.3) converges.

Proof. First observe that in view of the nonexpansivity (3.7), we can restrict our-
selves to the case that u and v are continuous functions with bounded support.
Then we define inductively two sequences um and vm of polarizations of u and v,
as in Theorem 6.1, where the corresponding halfspaces Hm are chosen in such a
way that the minimality property (6.13) is satisfied. By Theorem 6.2 the sequences
um and vm converge in C(Rn) to u∗ and v∗, respectively. Then (8.3) follows by
applying Lemma 8.1 inductively.

Remark 8.1. (8.3) includes a special case of Riesz inequality (see [Bae2]).
In fact, let j(z) = z2 and let u, v, w as in Lemma 8.2. Then∫∫

Rn

u(x)v(y)w(x − y) dxdy ≤
∫∫
Rn

u∗(x)v∗(y)w(x − y) dxdy,(8.4)

if the left-hand side in (8.4) converges.
(Note that, in contrast to the general version of (8.4) (see e.g. [Ka1, p.25]), the

third function w in (8.4) is already symmetrized.)

Recently one of the authors (see [Br]) used polarization to show the symmetry
of local minimizers of some variational problems with potentials. Those problems
may describe equilibrium states in continuum mechanics, e.g. of plasma regions,
rotating stars and liquids (see [F, Chapter 4]). The idea consists in combining the
continuity property of the polarization (Lemma 5.2), the “identification” lemma
6.3 and the convolution inequality for the polarization (Lemma 8.1). Theorem
8.1 below generalizes a corresponding result of [Br] to the case of (k, n)-Steiner
symmetrization, 1 ≤ k ≤ n. The proof from [Br] carries over without difficulties to
the general case.

Theorem 8.1. Let K be a closed subset of Lp+(Rn), 1 ≤ p < +∞, and let K
have the property that if v ∈ K, then also v∗ ∈ K. Furthermore, let ϕ, ψ be real
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continuous functions on R+
0 , let j be a Young function, g, w ∈ S+ with g = g∗ and

w = w∗, and let J be defined by

J(v) :=
∫ ∫
R2n

j
(
|v(x)− v(y)|

)
w(x− y) dxdy −

∫
Rn

ϕ
(
v(x)

)
g(x) dx

+
∫
Rn

ψ
(
v(x)

)
dx, v ∈ K.(8.5)

Finally suppose that the functions g, w, j satisfy one of the following conditions:
(i) The function g̃, defined by

g̃(x, r) := g(x, y) ( r = |y| )

is strictly decreasing in r.
(ii) The function w̃, defined by

w̃(x, r) := w(x, y) ( r = |y| )

is strictly decreasing in r, and j is strictly convex.
Then, if u is a local minimum of J in K, we have u∗(x) = u(σx), where σ is

some translation in a direction orthogonal to Σ.

Next we give elementary proofs of some well-known Dirichlet-type inequalities
for functions and their symmetrizations (see e.g. [Bae2], [Ka1] and the literature
cited therein).

Remark 8.2. Let u ∈ W 1,p
+ (Rn). Using the limit process of the previous section

we cannot hope that the polarizations um converge strongly to u∗ in W 1,p(Rn).
(Otherwise there would be ‖∇u‖p = ‖∇u∗‖p, which is generally not true!)

Theorem 8.2. Let u ∈W 1,p
+ (Rn) (1 ≤ p < +∞). Then u∗ ∈W 1,p

+ (Rn) and

‖∇u∗‖p ≤ ‖∇u‖p.(8.6)

Furthermore, if V is some linear subspace which either contains all “y-directions”
xn−k+1, . . . , xn, or is orthogonal to each of these directions, then

‖∇V u∗‖p ≤ ‖∇V u‖p.(8.7)

Proof. Let um be the sequence of polarizations of u defined by Theorem 6.1, which
converges to u∗ in Lp(Rn). We consider 2 cases.

(i) Let 1 < p < +∞.
Since

‖∇um‖p = ‖∇u‖p,
by (5.9) we find a function v ∈ W 1,p(Rn) and a subsequence um′ such that

um′ ⇀ v weakly in W 1,p(Rn).

This means that for every ϕ ∈ C∞0 (Rn) and i ∈ {1, . . . , n}∫
Rn
ϕvxi dx←−

∫
Rn
ϕ
∂(um′)
∂xi

dx

= −
∫
Rn
ϕxium′ dx −→ −

∫
Rn
ϕxiu

∗ dx,

that is, v = u∗. In view of the lower semi-continuity of the norm it follows that

‖∇u∗‖p ≤ lim inf ‖∇(um)‖p = ‖∇u‖p.
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Using the equations (5.10) one proves (8.7) analogously.
(ii) Let p = 1.
By Lemma 5.3 the functions |∇um| and |∇u| are rearrangements of each other.

This means that for every δ > 0

sup
{∫

E

|(um)xi | dx : Ln(E) ≤ δ
}
≤ sup

{∫
E

|∇um| dx : Ln(E) ≤ δ
}

= sup
{∫

E

|∇u| dx : Ln(E) ≤ δ
}
.

Hence, if Ek is any sequence of measurable sets with limLn(Ek) = 0, we infer that

sup
{∫

Ek

|(um)xi | dx : m ∈ N
}
−→ 0 , as k → +∞.

Applying a well-known weak compactness-criterion in L1(Rn) (see [A, p.199]), we
again can extract a subsequence um′ converging weakly in W 1,1(Rn). Then pro-
ceeding as in case (i) the assertion follows in the case p = 1 too.

Corollary 8.1. Inequalities (8.7) contain the following special cases, (1 ≤ i ≤ n):∥∥∥∂u∗
∂xi

∥∥∥
p
≤
∥∥∥ ∂u
∂xi

∥∥∥
p

(8.8)

and

‖∇yu∗‖p ≤ ‖∇yu‖p.(8.9)

(Here ∇y := ( ∂
∂xn−k+1

, . . . , ∂
∂xn

) is the gradient with respect to y.)

A result analogous to Theorem 8.2 holds for Lipschitz functions

Corollary 8.2. Let u ∈ W 1,∞(Rn) ∩ L1
+(Rn). Then u∗ ∈ W 1,∞(Rn) ∩ L1

+(Rn)
and (8.6) holds with p =∞.

Proof. Since u is Lipschitz continuous, we infer from Theorem 6.2 that u∗ is Lip-
schitz continuous too. By Rademacher’s Theorem this means that u∗ ∈ W 1,∞(Rn),
and inequality (8.6) follows from (6.17).

The following corollary can be proved analogously to Corollary 5.1 by replacing
the polarization by the symmetrization.

Corollary 8.3. Let Ω ⊂ Rn be an open set and u ∈W 1,p
0+ (Ω) (1 ≤ p < +∞). Then

u∗ ∈ W 1,p
0+ (Ω∗) and formulas (8.6)–(8.9) hold.

It is also easy to prove an inequality for convex functionals.

Theorem 8.3. Let u ∈W 1,1
+ (Rn), k ∈ {1, . . . , n}, and let j be a Young- function.

Then ∫
Rn
j(|∇u∗|) dx ≤

∫
Rn
j(|∇u|) dx,(8.10)

if the integral on the right-hand side of (8.10) converges.
Furthermore, if V is chosen as in Theorem 8.2, then∫

Rn
j(|∇V u∗|) dx ≤

∫
Rn
j(|∇V u|) dx,(8.11)

in the case that the integral on the right-hand side of (8.11) converges.
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Proof. Assume first that u ∈ C0,1
0+ (Rn). If we choose a sequence um of polarizations

of u converging to u∗ in L1(Rn), we conclude from Lemma 5.3∫
Rn
j(|∇um|) dx =

∫
Rn
j(|∇u|) dx.

Because of the weak lower semi-continuity of the integral functional this leads to∫
Rn
j(|∇u|) dx = lim inf

∫
Rn
j(|∇um|) dx ≥

∫
Rn
j(|∇u∗|) dx.

If u ∈ W 1,1
+ (Rn), we choose a sequence vm ∈ C0,1

0+ (Rn) such that

vm −→ u in W 1,1(Rn)

and ∫
Rn
j(|∇vm|) dx −→

∫
Rn
j(|∇u|) dx.

This means that we have for a subsequence vm′

(vm′)∗ ⇀ u∗ weakly in W 1,1(Rn),

and we conclude again by the weak lower semi-continuity of the functionals.
One proves (8.11) analogously.

An analogue of Theorem 8.2 holds for BV -functions. Theorem 8.4 below can be
proved analogously to Lemma 5.4 by replacing polarization by symmetrization.

Theorem 8.4. Let u ∈ BV (Rn) ∩ L1
+(Rn). Then u∗ ∈ BV (Rn) ∩ L1

+(Rn) and

‖Du∗‖BV ≤ ‖Du‖BV .(8.12)

Choosing for u in (8.12) a characteristic function of a set of finite perimeter we
derive the well-known isoperimetric inequality. Again, as in the case of Theorem
6.3, we will not discuss the equality sign in (8.13) below. A complete study of the
isoperimetric problem can be found in the survey article [Ta3]. (For further sources
see [BuZ], [Ha] and [Sch].)

Theorem 8.5 (Isoperimetric inequality in Rn). Let E be a Caccioppoli set in Rn.
Then

‖Dχ(E∗)‖BV ≤ ‖Dχ(E)‖BV .(8.13)

9. Two-point comparison results for the polarization

In this section some boundary and initial value problems are compared with
similar problems in which the domain and the data are replaced by polarized ones.
Using no more than the maximum principle we obtain some pointwise inequalities
for the solutions. This method was applied in [So2] to some problems on harmonic
measures, Green’s functions and the Poincaré metric.

By exploiting several approximation arguments, we will obtain from these com-
parison theorems some well-known analogues for the (k, n)-Steiner symmetrization
(see section 10). Those problems were extensively studied during the last decade
(see [ALT1], [ALT2] [Bae2] and the cited literature therein). In a forthcoming paper
[BS] we will prove comparison theorems for some type of continuous (k, n)-Steiner
symmetrization in a similar way.
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It is useful to work with the following partial ordering relation. Let H be some
halfspace in Rn. If f, g ∈ L1

+(Rn), we write

f ≺H g ⇐⇒
∫
Rn

fh dx ≤
∫
Rn

gHhH dx ∀h ∈ L∞+ (Rn).(9.1)

Lemma 9.1. Let H be some halfspace in Rn and f, g ∈ L1
+(Rn). Then

f ≺H g

⇐⇒ f(x) + f(x) ≤ g(x) + g(x) and
max{f(x); f(x)} ≤ max{g(x); g(x)} ∀x ∈ H,(9.2)

⇐⇒
∫
Rn

fHhH dx ≤
∫
Rn

gHhH dx ∀h ∈ L∞+ (Rn),(9.3)

⇐⇒ j(f) ≺H j(g) for all Lipschitz continuous Young functions j.(9.4)

Proof. (9.2)⇒(9.3):
From (9.2) we deduce that

fH(x)hH(x)+fH(x)hH(x) ≤ gH(x)hH(x)+gH(x)hH(x) ∀x ∈ H, h ∈ L∞+ (Rn).

An integration over H yields (9.3).
(9.3)⇒(9.1):

By the Hardy-Littlewood inequality (3.10) we have
∫
fh ≤

∫
fHhH .

(9.1)⇒(9.2):
Choosing in (9.1) h = δ(x, ·) + δ(x, ·) or h = δ(x, ·) for an arbitrary x ∈ Rn gives
(9.2).

(9.1)⇔(9.4):
If ai, bi, i = 1, 2, are nonnegative numbers satisfying

a1 + b1 ≤ a2 + b2 and max{a1; b1} ≤ max{a2; b2},
and j is a Young-function, then one can easily derive that

j(a1) + j(b1) ≤ j(a2) + j(b2).

Thus, because of the equivalence of (9.1) and (9.2), from (9.1) follows (9.4). Clearly
(9.1) is a special case of (9.4).

Remark 9.1. Of course, if f, g ∈ Lp+(Rn) (1 < p ≤ +∞), then we may take h in
Lp
′

+(Rn) in (9.1),(9.3) while in (9.4) we may relax the assumption that j′ is bounded
by assuming j(z) ≤ C(1 + zp) if p < +∞ (and nothing if p = +∞).

As one can see from simple examples, the polarization of a domain may be
disconnected, i.e. need not be a domain. For this reason we prefer to state our
boundary and initial value problems in open sets instead of domains.

The next definition will be useful in order to simplify some notations in our
proofs.

Definition 9.1. Let Ω ⊂ Rn be a bounded open set, c ∈ R+
0 and f ∈ L2

+(Ω).
We say that u solves the problem B1(Ω, c, f) if u is the solution of the following
boundary value problem:

u ∈W 1,2
0 (Ω), −∆u+ cu = f in Ω.(9.5)
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The following simple comparison theorem will play a central role in some proofs
of the next section.

Theorem 9.1. Let H be some halfspace, Ω ⊂ Rn a bounded open set, c ∈ R+
0 ,

f ∈ L2
+(Ω), g ∈ L2

+(ΩH) and assume that f ≺H g and g = gH. Let u and v be the
solutions of problems B1(Ω, c, f) and B1(ΩH , c, g), respectively. Then

u ≺H v(9.6)

and

v = vH .(9.7)

Furthermore we have

v(x) − v(x) ≥ |u(x)− u(x)| ∀x ∈ ΩH ∩H,(9.8)

and, if u ∈ C1
loc(Ω), v ∈ C1

loc(ΩH), then

∂v

∂n
≥
∣∣∣∂u
∂n

∣∣∣ on ∂H ∩Ω ( n : interior normal ).(9.9)

Proof. We set G := {x ∈ H : x ∈ Ω}. Let us first assume that

u ∈ C1
loc(Ω) ∩ C(Ω), v ∈ C1

loc(ΩH) ∩ C(ΩH).(9.10)

The proof of (9.6) consists of three steps.
1) Consider the function

w1(x) := u(x) + u(x)− v(x)− v(x), x ∈ ΩH ∩H.
Let us assume that

sup
H

w1 > 0.

One verifies easily that −∆w1+cw1 ≤ 0 in (G\Ω)∩H, (Ω\G)∩H and (Ω∩G)∩H ,
respectively. Since (∂w1)/(∂ν) = 0 on ∂H ∩ Ω (ν: normal to the hyperplane ∂H),
the maximum principle ensures that one of the following cases (i) or (ii) is satisfied:

(i) sup
H
w1 = sup

∂G∩Ω
w1,

(ii) sup
H
w1 = sup

∂Ω∩G
w1.

(i) We consider the function

w2(x) := u(x)− v(x), x ∈ Ω ∩H.
Since −∆w2 + cw2 ≤ 0 in Ω ∩H and w2 ≤ 0 on ∂Ω ∩H , w2 attains its maximum
value at some point z1 ∈ ∂H ∩Ω. Thus

w1(z1)
(since z1 ∈ ∂H ∩ Ω !) = 2w2(z1)
(maximality of z1 !) ≥ 2 sup

∂G∩Ω
w2

(since w1 = w2 on ∂G ∩ Ω !) = 2 sup
∂G∩Ω

w1,

a contradiction.
(ii) We consider the function

w3(x) := u(x)− v(x), x ∈ G.
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Since −∆w3 + cw3 ≤ 0 in G and w3 ≤ 0 on ∂G∩H , w3 attains its maximum value
at some point z2 ∈ ∂H ∩ Ω. Therefore

w1(z2)
(since z2 ∈ ∂H ∩ Ω !) = 2w3(z2)

(maximality of z2 !) ≥ 2 sup
∂Ω∩G

w3

(since w1 = w3 on ∂Ω ∩G !) = 2 sup
∂Ω∩G

w1,

a contradiction. Thus we have proved that

w1(x) ≤ 0 ∀x ∈ ΩH ∩H.(9.11)

2) We consider the function w2 in ΩH ∩H .
We have w2(x) = 2w1(x) ≤ 0 on ∂H ∩ Ω and w2(x) = w1(x) ≤ 0 on ∂ΩH ∩H .

As g ≥ 0, we have w2(x) = −v(x) ≤ 0 in (G \ Ω) ∩H . Since −∆w2 + cw2 ≤ 0 in
(G \ Ω) ∩H , the maximum principle tells us that

w2 ≤ 0 in ΩH ∩H.(9.12)

3) We consider the function w3 in ΩH ∩H .
We have w3(x) = 2w1(x) ≤ 0 on ∂H ∩ Ω, w3(x) = w1(x) ≤ 0 on ∂ΩH ∩H and

w3(x) = −v(x) ≤ 0 in (Ω \ G) ∩H . Since −∆w3 + cw3 ≤ 0 in G, we conclude by
the maximum principle that

w3 ≤ 0 in ΩH ∩H.(9.13)

Now (9.6) follows from (9.11)–(9.13).
If we replace the second condition in (9.10) by the weaker assumption

v ∈ C1
loc(ΩH),

then
lim inf
z→x

v(z) ≥ 0, x ∈ ∂ΩH ,

and the arguments of the above steps 1)–3) hold with slight modifications.
In the general case we choose open sets Ωm with smooth boundary, such that

Ωm b Ωm+1, m = 1, 2, . . . , and
⋃
m

Ωm = Ω,

and functions fm := f − (f − m)+, gm := g − (g − 2m)+, m = 1, 2, . . . . Then
let um and vm be the solutions of problems B1(Ωm, c, fm) and B1((Ωm)H , c, gm),
respectively. Since fm ∈ L∞(Ω) and gm ∈ L∞(ΩH), we have concluded um ∈
C1

loc(Ωm) ∩ C(Ωm) and vm ∈ C1
loc((Ωm)H) by the imbedding theorems. Since

fm ≺H gm, it follows then that um ≺H vm, m = 1, 2, . . . . Furthermore, we have
fm → f in L2(Ω), gm → g in L2(ΩH) and

⋃
m(Ωm)H = ΩH . By applying Lemma

A (Appendix) this yields um → u in W 1,2
0 (Ω) and vm → v in W 1,2

0 (ΩH), and (9.6)
follows.

The assertion (9.7) follows by applying (9.6) with g = fH and u = σH(v).
Inequalities (9.8) are proved in a similar way. Clearly (9.9) is a limit case of

(9.8).

Analogous to the above proof one can derive similar pointwise inequalities for
Green’s functions (see [So2]). On the other hand these inequalities can be seen as
special cases of (9.6),(9.7) via a limit process.
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Corollary 9.1. Let G and G̃ denote the Green’s functions for the Dirichlet prob-
lems B1(Ω, c, ·) and B1(ΩH , c, ·), respectively. Then

G(·, z) ≺H G̃(·, z), G(·, z) ≺H G̃(·, z) ∀z ∈ H,(9.14)

and

G̃(x, z)− G̃(x, z) ≥ max{|G(x, z)−G(x, z)|; |G(x, z)−G(x, z)|} ∀x, z ∈ H.
(9.15)

Proof. We denote by δ(x, z) the usual Delta distribution (x, z ∈ Rn). Then formally
G(·, z) is the solution of the problem B1(Ω, c, δ(·, z)) ∀z ∈ Ω and G̃(·, z) is the
solution of the problem B1(ΩH , c, δ(·, z)) ∀z ∈ ΩH . Since(

δ(·, z)
)
H

=
(
δ(·, z)

)
H

= δ(·, z) ∀z ∈ H,

the Green’s functionsG(·, z), (respectively G(·, z)), and G̃(·, z) can be approximated
by “polarized pairs” of regular Dirichlet problems exactly as in Theorem 9.1. We
leave the details to the reader.

Next we will investigate comparison results for so-called nonnegative minimal
solutions of boundary value problems.

Definition 9.2. Let Ω ⊂ Rn be a bounded open set, c ∈ R+
0 , f ∈ L2

+(Ω) and
γ : R+

0 → R+
0 be a continuous and nondecreasing function. We will say that u is

a solution of problem B2(Ω, c, γ, f), if u is the nonnegative minimal solution of the
following boundary value problem:

u ∈ W 1,2
0 (Ω), u ≥ 0, −∆u+ cu = γ(u) + f in Ω,(9.16)

that is,
(i) u is a solution of the problem (9.16), and
(ii) 0 ≤ u ≤ u for all other solutions u of (9.16).

Remark 9.2. Nonnegative minimal solutions describe stable (“ground”) equilibrium
states in heat conduction. We mention some properties of the solutions of the
problems in Definition 9.1 (for further information see [Ke]).

1) The nonnegative minimal solutions of the boundary value problems (9.16)
(whenever they exist!) are unique, and they can be generated by monotone itera-
tion.

If u solves the problem B2(Ω, c, γ, f), u0 ≡ 0, and um are solutions of the prob-
lems B1(Ω, c, γ(um−1) + f), m = 1, 2, . . . , then the sequence {um} is monotone
increasing and

lim
m→∞

um(x) = u(x) for a.e. x ∈ Ω.(9.17)

2) The notion of nonnegative minimal solution overlaps with some cases of
uniquely solvable boundary value problems.

Let Ω, c and f be as in Definition 9.2, let γ : R+
0 → R+

0 , and assume that γ has
a difference quotient which is bounded below, i.e. we have, for some number k ≥ 0,

γ(s)− γ(t)
s− t ≥ −k ∀s, t ≥ 0.

Further assume that the boundary value problem (9.16) admits a unique
solution u. Then it follows from 1) that u coincides with the solution of problem
B2(Ω, c+ k, γ̃, f) where γ̃(t) := γ(t) + kt, t ≥ 0.
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Note that boundary value problem (9.16) is uniquely solvable, if γ is a decreasing
function for instance.

Theorem 9.2. Let Ω, c, f, g and H be as in Theorem 9.1, and let γ be a Young
function. Assume that u and v are solutions of the problems B2(Ω, c, γ, f) and
B2(ΩH , c, γ, g), respectively. Then conclusions (9.6) and (9.7) of Theorem 9.1 hold.

Proof. According to Remark 9.2 we approximate u and v by the solutions um and
vm of problems B1(Ω, c, γ(um−1) + f) and B1(ΩH , c, γ(vm−1) + g), respectively,
m = 1, 2, . . . , u0 ≡ v0 ≡ 0. Assume that um ≺H vm for some m ∈ N. (For
m = 0 this is true.) Then by Lemma 9.1, (9.4), it follows that (γ(um) + f) ≺H
(γ(vm) + g). In view of Theorem 9.1 this yields um+1 ≺H vm+1, and we conclude
by induction.

It is natural to ask in which situations we have uH = v in Theorem 9.2. An
answer is given by the following Theorem 9.3. The reader verifies easily that we
cannot drop the condition that Ω is connected.

Theorem 9.3. Let Ω, c, f, g,H, γ, u, v be as in Theorem 9.2, and assume that Ω is
a domain with Ω 6= σH(Ω) and ‖f‖2 > 0. Let one of the following situations be
valid:

(i) Ω 6= ΩH ;
(ii) Ω = ΩH and f 6= g;

(iii) σH(Ω) = ΩH and σH(f) 6= g.
Then

u(x) + u(x) < v(x) + v(x) and
max{u(x); u(x)} < max{v(x); v(x)} for a.e. x ∈ Ω.

(9.18)

If the solutions u, v are continuous in Ω, respectively ΩH , then inequalities (9.18)
are satisfied for all points x ∈ Ω.

Furthermore, if j is any Young function satisfying∫
ΩH

j(v) dx > 0,(9.19)

then ∫
Ω

j(u) dx <
∫

ΩH

j(v) dx.(9.20)

Proof. We use the notations of the proof of Theorem 9.1. First recall that by
Theorem 9.2 we have u ≺H v and thus—by Lemma 9.1—also (γ(u) + f) ≺H
(γ(v) + g).

Now we investigate the cases (i)–(iii).
(i) Since u ≥ 0, it follows that −∆w2 + cw2 ≤ 0 and −∆w3 + cw3 ≤ 0 weakly in

ΩH ∩H . Since also w2 ≤ 0, w3 ≤ 0 in ΩH ∩H , w2 < 0 in (G \Ω) ∩H and w3 < 0
in (Ω \G) ∩H , the strong maximum principle yields

w2 < 0 and w3 < 0 in ΩH ∩H,(9.21)

which gives the second inequality of (9.18).
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From (9.21) we see that w1 = w2 < 0 in (Ω\G)∩H , w1 = w3 < 0 in (G\Ω)∩H .
Since w1 ≤ 0 and −∆w1 + cw1 ≤ 0 in Ω ∩ G ∩H , the strong maximum principle
gives

w1 < 0 in ΩH ∩H,(9.22)

which is the first inequality of (9.18).
(ii) Analogously as above we can conclude that w3 < 0 in Ω ∩H . Further we

have w2 ≤ 0 and −∆w2 + cw2 ≤ f − g ≤ 0 in Ω ∩H . Since∫
Ω∩H

(
f − g

)
dx < 0,

the strong maximum principle yields w2 < 0 in Ω ∩ H . Then we can argue as in
case (i) to obtain that w1 < 0, and (9.18) follows.

(iii) In this case the assertion follows by replacing u in (ii) by the reflected
function σH(u).

Finally let j be a Young function satisfying (9.19). Then it follows that j(v) > 0
on a subset N of ΩH ∩H of positive measure. From (9.18) we infer

j(uH(x)) + j(uH(x)) ≤ j(v(x)) + j(v(x)) for a.e. x ∈ H ∩ ΩH ,

whereby these inequalities are strict on N . This leads after an integration over H
to the second assertion (9.20).

Since the proofs of the comparison theorems, Theorems 9.1, 9.2, depend only on
the maximum principle, we can derive similar results for parabolic problems. The
proof presented here is based on an approximation scheme involving solutions of
some elliptic problems. This idea was used in [ALT3] to show comparison results
via Schwarz symmetrization. As we will see in the next section, this method works
also for other types of rearrangements.

Let us introduce some notations.

Definition 9.3. Let Ω, c be as in Definition 9.2, let T > 0, f ∈ L2
+(Ω × (0, T )),

ϕ ∈ L2
+(Ω), and let γ : R+

0 → R+
0 be a globally Lipschitzian function. We say

that u solves the problem I(Ω, T, c, γ, f, ϕ) if u is a solution of the following initial
boundary value problem:

u ∈ L2(0, T ;W 1,2
0 (Ω)) ∩C([0, T ];L2(Ω)),

∂u

∂t
∈ L2([0, T ];L2(Ω)),

ut −∆u+ cu = γ(u) + f in Ω× (0, T ),(9.23)
u(x, 0) = ϕ(x) in Ω.

Remark 9.3. Under the above conditions problem I(Ω, T, c, γ, f, ϕ) has a unique
nonnegative solution which can be approximated by the so-called method of dis-
cretization in time (see [Kac]).

We choose some number N ∈ N and divide the interval (0, T ) into N subintervals
[ti−1, ti], where ti = (iT )/N , and we set

fi(x) :=
T

N

ti∫
ti−1

f(x, s) ds, i = 1, . . . , N.(9.24)

For i = 1, . . . , N , let ui be the solution of the problem

B1(Ω, c+ (N/T ), γ(ui−1) + fi + (N/T )ui−1),
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provided ui−1 is known and u0 ≡ ϕ. Then by setting

uN (x, t) := ui−1(x) + (t− ti−1)
N

T
(ui(x)− ui−1(x))

for ti−1 ≤ t ≤ ti, i = 1 . . . , N,
(9.25)

we have (see [Kac, Theorem 2.2.4, p.42 ff.])

uN(·, t) ⇀ u(·, t) weakly in W 1,2
0 (Ω) ∀t ∈ (0, T ),

∂uN

∂t
⇀

∂u

∂t
weakly in L2([0, T ];L2(Ω)),

and
uN −→ u in C(0, T ;L2(Ω)).

Theorem 9.4. Let Ω, T, c, γ be as in Definition 9.3, and let γ be convex, let H
be some halfspace, let f ∈ L2

+(Ω × (0, T )), g ∈ L2
+(ΩH × (0, T )), ϕ ∈ L2

+(Ω)
and ψ ∈ L2

+(ΩH) with ϕ ≺H ψ and f(·, t) ≺H g(·, t) ∀t ∈ (0, T ). Let u and v
be solutions of the problems I(Ω, T, c, γ, f, ϕ) and I(ΩH , T, c, γ, g, ψ), respectively.
Then

u(·, t) ≺H v(·, t) ∀t ∈ (0, T )(9.26)

and

v(·, t) = vH(·, t) ∀t ∈ (0, T ).(9.27)

Proof. Let ui be as in Remark 9.3, and let vi be defined analogously by replacing
Ω, f and ϕ by ΩH , g and ψ, respectively, i = 0, 1, . . . , N . By the assumptions we
have u0 ≺H v0. If N is large enough, then γ(s) +Ns/T is increasing and convex in
s, and we have fi ≺H gi, i = 1, . . . , N, by (9.24). Therefore we can argue as in the
proof of Theorem 9.2, and obtain that ui ≺H vi, i = 1, . . . , N . By (9.25) it follows
that uN ≺H vN . Then passing to the limit as N → +∞ we conclude.

10. Comparison results for symmetrizations

In the following we let ∗ denote any (k, n)-Steiner symmetrization (1 ≤ k ≤ n),
and use the notations of section 6.

As in the previous section we introduce a partial order “≺∗”.
For functions f, g ∈ L1

+(Rn) we write

f ≺∗ g ⇐⇒
∫
Rn

fh dx ≤
∫
Rn

g∗h∗ dx ∀h ∈ L∞+ (Rn).(10.1)

Remark 10.1. The partial order “≺∗ ” was introduced in [ALT1]. The following
equivalences hold (for proofs see [ALT2]).

f ≺∗ g

⇐⇒
∫
Rn

f∗h∗ dx ≤
∫
Rn

g∗h∗ dx ∀h ∈ L∞+ (Rn),(10.2)

⇐⇒ j(f) ≺∗ j(g) ∀ Lipschitz-continuous Young functions j,(10.3)

⇐⇒
∫

{|z|≤r}

f∗(x′, z) dz ≤
∫

{|z|≤r}

g∗(x′, z) dz ∀r > 0, x′ ∈ Rn−k.(10.4)

Corollary 10.1. Let H ∈ H, f, g ∈ L1
+(Rn) and f ≺H g. Then we have f ≺∗ g.
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Proof. By (6.6) and (3.10) we have∫
Rn

fh dx ≤
∫
Rn

gHhH dx ≤
∫
Rn

g∗h∗ dx ∀h ∈ L∞+ (Rn).

The following result was proved in various ways (see e.g. [Ta1], [Ban], [ADLT],
[ALT2] and [Bae2]).

The present proof seems to be the most elementary one. It is based on an
approximation of symmetrizations by sequences of polarizations and on comparison
theorem 9.1.

Theorem 10.1. Let be Ω, c, f and γ be as in Theorem 9.2, let g ∈ L2
+(Ω∗) with

f ≺∗ g and g = g∗, and let u and v be the solutions of the problems B2(Ω, c, γ, f)
and B2(Ω∗, c, γ, g) , respectively. Then

u ≺∗ v(10.5)

and

v = v∗.(10.6)

Proof. The proof consists of two steps.
1) First assume that γ ≡ 0.
Let ṽ denote the solution of the problem B1(Ω∗, c, f∗). The maximum principle

tells us that v = v∗ and ṽ = ṽ∗. Furthermore, let h be an arbitrary function in
L2

+(Ω∗) satisfying h = h∗, and let w be the solution of problem B1(Ω∗, c, h). Since
again w = w∗ and w ≥ 0, we find after partial integration that∫

Ω∗

ṽh∗ dx =
∫
Ω∗

wf∗ dx ≤
∫
Ω∗

wg dx =
∫
Ω∗

vh∗ dx,

which means that

ṽ ≺∗ v.(10.7)

Next let Ω′ be a domain with Ω′ b Ω. By Lemma 7.1 we find polarizations Pm,
with corresponding halfspacesHi ∈ H0, i = 1, . . . ,m0, such that©m0

i=1Pi(Ω
′) b Ω∗.

Clearly we have
(
©m0
i=1 Pif

)∗
= f∗. Then we can find further polarizations Pi,

with corresponding halfspaces Hi ∈ H0, i = m0 + 1,m0 + 2, . . . , such that

fm :=©m
i=1Pif −→ f∗ in L2(Ω).

Note that by monotonicity we have

Ω′m :=©m
i=1Pi(Ω

′) b Ω∗ ∀m ≥ m0.

Let u′ and u′m be the solutions of the problems B1(Ω′, c, f) and B1(Ω′m, c, fm),
respectively, m = 1, 2, . . . . Applying Theorem 9.1 we conclude that

u′ ≺H1 u
′
1 ≺H2 u

′
2 ≺H3 . . . .(10.8)

Since the functions u′m are equibounded in W 1,2(Rn) and u′m ∈W
1,2
0 (Ω∗) for m ≥

m0, we find a function w ∈W 1,2
0 (Ω∗) and a subsequence u′m′ such that

u′m′ ⇀ w weakly in W 1,2
0 (Ω∗).
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By passing again to a subsequence, if necessary, we have that

u′m′ −→ w in L2(Rn)

and
lim

m′→∞
u′m′(x) = w(x) for a.e. x ∈ Ω∗.

Together with (10.8) and Corollary 10.1 this leads to

u′ ≺∗ w.(10.9)

Now let ϕ ∈ C∞0+(Ω∗). Since the functions u′m are nonnegative, we obtain that∫
Ω∗

∇w∇ϕ dx←−
∫

Ω′
m′

∇u′m′∇ϕ dx

≤
∫

Ω′
m′

(
− cu′m′ + fm′

)
ϕ dx −→

∫
Ω∗

(
− cw + f∗

)
ϕ dx

as m′ → ∞, i.e w is a weak subsolution to the problem B1(Ω∗, c, f∗). Together
with (10.7) and (10.9) this means that u′ ≺∗ v.

Now we choose open bounded sets Ωk such that Ωk b Ωk+1, k = 1, 2, . . . , and⋃
k Ωk = Ω. Let uk denote the solution of the problem B1(Ωk, c, f), k = 1, 2, . . . .

By the above considerations we have uk ≺∗ v, k = 1, 2, . . . , and by Lemma A
(Appendix) the sequence uk converges to u in L2(Ω). This proves the assertions in
the case under consideration.

2) Next let γ 6= 0.
According to Remark 9.2 we approximate u and v by the solutions um and vm of

the problems B1(Ω, c, γ(um−1) + f) and B1(Ω∗, c, γ(vm−1) + g), respectively (u0 ≡
v0 ≡ 0, m = 1, 2, . . . ). Assume that we had proved that um ≺∗ vm for some m. (For
m = 0 this is trivial.) Then by Remark 10.1 we obtain that γ(um)+f ≺∗ γ(vm)+g.
By part 1) of the proof this means that also um+1 ≺∗ vm+1, and we conclude by
induction.

Remark 10.2. 1) From (10.5) we obtain via Remark 10.1 the estimates∫
Ω

j(u) dx ≤
∫
Ω∗

j(v) dx ∀ Young functions j,(10.10)

and in particular

‖u‖p ≤ ‖v‖p ∀p ∈ [1,+∞],(10.11)

if the above integrals converge.
2) As was pointed out by Baernstein [Bae2], in the case that k = n (Schwarz-

symmetrization) and c = 0, γ ≡ 0, one can exploit the radial symmetry of the
solution v to derive from (10.5) the sharper inequality

u∗ ≤ v in Ω∗.(10.12)

This result was also proved by other authors in various ways (see [Ta1], [Ban]).

The following theorem is due to Bandle (see [Ban, Theorem 10.4]).

Theorem 10.2. Let u, v be as in Theorem 10.1, where ∗ denotes Schwarz sym-
metrization, and assume that c = 0 and γ : R+

0 → R+
0 is a continuous and nonde-

creasing function, but not nessecarily convex. Then (10.12) holds.
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Proof. We can argue analogously to part 2) of the proof of Theorem 10.1 by re-
placing the relations “≺∗” by “≤”, and by making use of the conclusion (10.12) of
Remark 10.2,2) instead of (10.5).

One might ask under which conditions the equality holds in inequalities (10.10),
and believe that equality is possible only—roughly speaking—in a symmetric sit-
uation. Indeed this belief is proved true in the cases of spherical symmetrization
(see [ESh]) and Schwarz symmetrization (see [Kes1]–[Kes3]). We prove a similar
result for the (k, n)-Steiner symmetrizations. As in the uniqueness Theorem 9.3,
we restrict ourselves to the case where Ω is a domain.

Theorem 10.3. Let Ω, c, f, g, γ, u, v be as in Theorem 10.1 and assume that Ω is
a domain. Assume that there is some Lipschitz continuous Young function j which
satisfies ∫

Ω

j(u) dx =
∫
Ω∗

j(v) dx > 0 .(10.13)

Then we have Ω = Ω∗ and f = g modulo some translation in a direction orthogonal
to Σ.

Proof. Assume that Ω∗ is not a translation of Ω in a direction orthogonal to Σ.
Then by Lemma 6.3, (6.9) we can find a halfspace H ∈ H such that Ω 6= ΩH and
σH(Ω) 6= ΩH . Then, if w is the solution of problem B2(ΩH , c, γ, fH), we conclude
by Theorem 9.3 that ∫

Ω

j(u) dx <

∫
ΩH

j(w) dx.(10.14)

Further, since (ΩH)∗ = Ω∗ and (fH)∗ = f∗, we have also w ≺∗ v. By Remark 10.2
this means that ∫

ΩH

j(w) dx ≤
∫
Ω∗

j(v) dx,

which together with (10.14) contradicts (10.13). Thus Ω = Ω∗ modulo a translation
in some direction orthogonal to Σ. Without loss of generality we may assume that
Ω = Ω∗.

Now assume that f 6= f∗. By Lemma 6.4 there is a halfspace H ∈ H0 such that
f 6= fH , and we can argue as before to derive a contradiction to (10.13).

Thus we have f = f∗ and it remains to show that f∗ = g.
Assume that this is not true. We set f̃ := γ(u) + f and g̃ := γ(v) + g. Since

u = u∗, v = v∗ and u ≺∗ v, it follows by Remark 10.1 that

f̃ ≺∗ g̃, f̃ = f̃∗ 6= g̃∗ = g̃,

and also ∫
{|z|<|y|}

(
f̃(x′, z)− g̃(x′, z)

)
dz ≤ 0 ∀(x′, y) ∈ Ω,(10.15)

where this last inequality must be strict on a subset of Ω of positive measure. Now
let h be an arbitrary function in L2

+(Ω) satisfying h = h∗ 6= 0. Then, if w is the
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solution of problem B1(Ω, c, h), we conclude that w = w∗. Moreover, the strong
maximum principle even yields

|∇yw(x)| > 0 a. e. in Ω.(10.16)

(Here ∇y denotes the gradient with respect to y.) Now after some partial integra-
tions and by using (10.15) and (10.16) we obtain∫

Ω

(u− v)h dx =
∫
Ω

w(f̃ − g̃) dx

= (kck)−1

∫
Ω

|y|1−k|∇yw(x′, y)|
( ∫
{|z|<|y|}

(f̃(x′, z)− g̃(x′, z)) dz

)
dx′ dy < 0,

( ck : volume of the k-dimensional unit ball ).(10.17)

Since j′ is nondecreasing and u = u∗, we have j′(u) =
(
j′(u)

)∗
(see (3.6)), and

in view of (10.13) it follows that j′(u) 6= 0. Therefore we may take h = j′(u) in
(10.17). Because of the convexity of j we get then∫

Ω

(
j(u)− j(v)

)
dx ≤

∫
Ω

j′(u)(u − v) dx < 0,

a contradiction. The theorem is proved.

The following analogue of Theorem 9.4 for symmetrizations was proved in [ALT2].
Our proof repeats the proof of Theorem 9.4 with obvious changes.

Theorem 10.4. Let Ω, c, T, f, γ, ϕ and u be as in Theorem 9.4, and let g ∈
L2

+(Ω∗×(0, T )), ψ ∈ L2
+(Ω∗) with f(·, t) ≺∗ g(·, t) and g(·, t) = g(·, t)∗ ∀t ∈ (0, T ),

and ϕ ≺∗ ψ, ψ = ψ∗. Let v be the solution of problem I(Ω∗, T, c, γ, g, ψ). Then

u(·, t) ≺∗ v(·, t) ∀t ∈ (0, T )(10.18)

and

v(·, t) = v∗(·, t) ∀t ∈ (0, T ).(10.19)

Proof. We can proceed exactly as in the proof of Theorem 9.4 by replacing the
polarization by the symmetrization and by making use of Remark 10.1, (10.3), and
Theorem 10.1 instead of Lemma 9.1, (9.3) and Theorem 9.1, respectively.

Remark 10.3. The results of sections 9 and 10 remain true if one replaces the Lapla-
cian by more general elliptic operators (see [ADLT], [ALT2] and [Bae2]).

1) First consider the situation of Theorems 9.1–9.4. Let the halfspace H take
the form {y > 0}, where Rn 3 x = (x′, y), y ∈ R. We may replace the operator
(−∆ + c) in the Definitions 9.1–9.3 by

−
n−1∑
i,j=1

∂

∂xi

(
aij(x′)

∂

∂xj

)
+ c(x′),(10.20)

where the functions aij and c are bounded and measurable, c ≥ 0, and the matrix(
aij

)
is positive definite, since operator in (10.20) is invariant under the reflection

σH .
2) Applying 1) and following the proofs of this section one generalizes Theorems

10.1–10.3 as follows.
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Let “∗” denote a (k, n)-Steiner symmetrization, and let its symmetry plane Σ
take the form {y = 0}, where Rn 3 x = (x′, y), y ∈ Rk. Then we may replace the
operator (−∆ + c) by

−
n−k∑
i,j=1

∂

∂xi

(
aij(x′)

∂

∂xj

)
−∆y + c(x′),(10.21)

where ∆y denotes the Laplacian with respect to y

∆y :=
n∑

i=n−k+1

∂2

∂x2
i

,

and the functions aij and c are as in 1).

Remark 10.4. An approach via polarization can also be developed for symmetriza-
tions in other measure spaces. For instance it is possible to derive integral inequal-
ities and comparison results for p.d.e.’s for cap symmetrizations on the sphere Sn

and for symmetrizations in the hyperbolic space Hn in a very similar way (compare
also [BT], [Bae1],[Bae2]).

Appendix

The following convergence property of elliptic boundary value problems in vary-
ing domains is well-known (see e.g. [He]).

Lemma A. Let Ωk,Ω be bounded open sets in Rn such that

Ωk ⊂ Ωk+1, k = 1, 2, . . . , and
⋃
k

Ωk = Ω.(10.22)

Let c ∈ R+
0 and f, fk ∈ L2

+(Ω), k = 1, 2, . . . , such that

fk −→ f in L2(Ω).(10.23)

Further let u and uk be the solutions of the problems B1(Ω, c, f) and B1(Ωk, c, fk),
respectively, k = 1, 2, . . . . Then

uk −→ u in W 1,2
0 (Ω).(10.24)
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