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a b s t r a c t

This paper deals withweighted isoperimetric inequalities relative to cones ofRN . We study
the structure of measures that admit as isoperimetric sets the intersection of a cone with
balls centered at the vertex of the cone. For instance, in case that the cone is the half-space
RN

+
=

x ∈ RN

: xN > 0

and the measure is factorized, we prove that this phenomenon

occurs if and only if the measure has the form dµ = axkN exp

c |x|2


dx, for some

a > 0, k, c ≥ 0. Our results are then used to obtain isoperimetric estimates for Neumann
eigenvalues of a weighted Laplace–Beltrami operator on the sphere, sharp Hardy-type
inequalities for functions defined in a quarter space and, finally, via symmetrization
arguments, a comparison result for a class of degenerate PDE’s.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This paper deals with weighted relative isoperimetric inequalities in cones of RN . Let ω be an open subset of SN−1, the
unit sphere of RN , andΩ the cone

Ω =


x ∈ RN

:
x
|x|

∈ ω, x ≠ 0

. (1.1)

We consider measures of the type dν = φ(x)dx onΩ , where φ is a positive Borel measurable function defined inΩ . For any
measurable setM ⊂ Ω , we define the ν-measure ofM

ν(M) =


M
dν =


M
φ(x)dx (1.2)

and the ν-perimeter ofM relative toΩ

Pν(M,Ω) = sup


M
div (v(x)φ(x)) dx : v ∈ C1

0 (Ω,R
N), |v| ≤ 1


.

We also write Pν(M,RN) = Pν(M). Note that ifM is a smooth set, then

Pν(M,Ω) =


∂M∩Ω

φ(x) dHN−1(x).
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The isoperimetric problem reads as

Iν(m) = inf{Pν(M,Ω) : M ⊂ Ω, ν(M) = m}, m > 0. (1.3)

One says thatM is an isoperimetric set if ν(M) = m and Iν(m) = Pν(M,Ω).
Wegive necessary conditions on the functionφ for havingBR∩Ω as an isoperimetric set, in Section 2.Here and throughout

the paper, BR and BR(x) denote the ball of radius R centered at zero and at x, respectively. In Theorem 2.1 we prove that if
BR ∩Ω is an isoperimetric set for every R > 0, then

φ = A(r)B(Θ),

where r = |x| andΘ =
x
|x| .

As an application of Theorem 2.1, we prove a sharp Hardy-type inequality for functions defined in Q = {x1 > 0, xN > 0}
involving a power-type weight, (see Theorem 2.2).

We are able to give an explicit expression of the density φ in some special cases. For instance, whenΩ is the half space

Ω = RN
+

=

x = (x1, . . . , xN) ∈ RN

: xN > 0

, (1.4)

if φ is a smooth function with a factorized structure,

φ(x) =

N
i=1

φi(x), (1.5)

and if BR ∩ RN
+
is an isoperimetric set, then

φ(x) = axkN exp(c |x|2), (1.6)

for some numbers a > 0, k ≥ 0 and c ≥ 0, (see Theorem 2.3).
Section 3 is dedicated to the case Ω = RN , and to the proof of the following Theorem, which is the main result of our

paper.

Theorem 1.1. Let µ be the measure defined by

dµ = xkN exp(c |x|2)dx, x ∈ RN
+
, (1.7)

with k, c ≥ 0, and let M be a measurable subset of RN
+
with finite µ-measure. Then

Pµ(M) ≥ Pµ(M⋆),

where M⋆
= Br⋆ ∩ RN

+
, with r⋆ such that µ(M) = µ(M⋆).

The proof of Theorem 1.1 requires some technical effort, due to the degeneracy of the measure on the hyperplane
{xN = 0}.

Note that Theorem 1.1 is embedded in a wide bibliography related to the isoperimetric problems for ‘‘manifolds with
density’’ (see, for instance, [1–9]). Further references will be given in Section 2.

It was shown in [10] that the isoperimetric set for measures of the type ykdxdy, with k ≥ 0 and (x, y) ∈ R2
+
, is BR ∩ R2

+
.

In [11] Borell proved that balls centered at the origin are isoperimetric sets for measures of the type exp(c |x|2)dx in RN with
c ≥ 0 (see also [2,8] for this and related results).

In Section 4 we consider degenerate elliptic problems of the type
−div(A(x)∇u) = xkN exp(c |x|2)f (x) in D
u = 0 on Γ+,

(1.8)

where D is a bounded open set in RN
+
, whose boundary is decomposed into a part Γ0, lying on the hyperplane {xN = 0}

and a part Γ+ contained in RN
+
. (For precise definitions, see Section 4). Assume that c, k ≥ 0, A(x) = (aij(x))ij is an N × N

symmetric matrix with measurable coefficients satisfying

xkN exp(c |x|2) |ζ |2 ≤ aij(x)ζiζj ≤ ΛxkN exp(c |x|2) |ζ |2 , Λ ≥ 1, (1.9)

for almost every x ∈ D and for all ζ ∈ RN . Assume also that f belongs to the weighted Hölder space L2(D, dµ), where dµ is
the measure defined in (1.7).

The type of degeneracy in (1.9) occurs, for k ∈ N, when one looks for solutions to linear PDE’s which are symmetric
with respect to a group of (k + 1) variables (see, e.g., [12,10,13] and the references therein). The case of a non-integer k has
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been the object of investigation, for instance, in the generalized axially symmetric potential theory (see, e.g., [14] and the
subsequent works of A. Weinstein).

We obtain optimal bounds for the solution to problem (1.8) using a symmetrization technique due to Talenti (see [15]
and also [16–18,12,10,19]).

If M is measurable set with finite µ-measure, and if f : M → R is a measurable function, the weighted rearrangement
f ⋆

: M⋆
→ [0,+∞[ is uniquely defined by the following condition

x ∈ M⋆
: f ⋆(x) > t


= {x ∈ M : |f (x)| > t}⋆

∀t ≥ 0. (1.10)

This means that the super level sets of f ⋆ are half-balls centered at the origin, having the same µ-measure of the
corresponding super level sets of |f |.

Let Cµ denote the µ-measure of B1 ∩ RN
+
. Using Theorem 1.1, we obtain the following comparison result.

Theorem 1.2. Let u be the weak solution to problem (1.8), and let w be the function

w(x) = w⋆(x) =
1
Cµ

 r⋆

|x|

 ρ

0
f ⋆(σ )σ N−1+k exp


cσ 2 dσ ρ−N+1−k exp


−cρ2 dρ,

which is the weak solution to the problem
−div


xkN exp


c |x|2


∇w


= xkN exp


c |x|2


f ⋆ inD⋆

w = 0 on∂D⋆
∩ RN

+
.

(1.11)

Then

u⋆(x) ≤ w(x) a.e. in D⋆, (1.12)

and 
D
|∇u|q dµ ≤


D⋆

|∇w|
q dµ, for all 0 < q ≤ 2. (1.13)

2. Weighted isoperimetric inequalities in a cone of RN

In this section we study isoperimetric problems with respect to measures, relative to cones in RN . Notice that such
problems have been investigated for instance in [20–25]. Our aim is to characterize those measures for which an
isoperimetric set is given by the intersection of a cone with the ball having center at the vertex of the cone.

We begin by fixing some notation that will be used throughout: ωN is the N-dimensional Lebesgue measure of the
unit ball in RN . For points x ∈ RN

− {0} we will often use N-dimensional polar coordinates (r,Θ), where r = |x| and
Θ = x|x|−1

∈ SN−1. ∇Θ denotes the gradient on SN−1. By SN−1
+ we denote the half sphere,

SN−1
+

= SN−1
∩ RN

+
.

Consider the isoperimetric problem (1.3), whereΩ is the cone defined in (1.1) and ν the measure given by (1.2).
The first result of this section says that, if the isoperimetric set of (1.3) is BR ∩Ω for a suitable R, then the density of the

measure dν is a product of two functions A and B of the variables r andΘ , respectively.
Note that it has been proven in [26] that a smooth density onRN is radial if and only if spheres about the origin are stationary
for a given volume.

Theorem 2.1. Consider Problem (1.3), with φ ∈ C1(Ω) ∩ C(Ω), φ(x) > 0 for x ∈ Ω . Suppose that Iν(m) = Pν(BR ∩ Ω)
whenever m = ν(BR ∩Ω), for every R > 0. Then

φ = A(r)B(Θ), (2.1)

where A ∈ C1((0,+∞)) ∩ C([0,+∞)), A(r) > 0 if r > 0, and B ∈ C1(ω), B(Θ) > 0 for Θ ∈ ω. Moreover, if φ ∈ C2(Ω),
then

λ(B, ω) ≥ N − 1 + r2

(A′(r))2

(A(r))2
−

A′′(r)
A(r)


∀r > 0, (2.2)

where

λ(B, ω) := inf


ω

|∇Θu|2B dΘ
ω
u2B dΘ

: u ∈ C1(ω),


ω

uB dΘ = 0, u ≠ 0


. (2.3)



5740 F. Brock et al. / Nonlinear Analysis 75 (2012) 5737–5755

Remark 2.1. Observe that λ(B, ω) is the first nontrivial eigenvalue of the Neumann problem
−∇Θ (B∇Θu) = λBu in ω
∂u
∂n

= 0 on ∂ω

where u ∈ W 1,2(ω), and n is the exterior unit normal to ∂ω.

Proof of Theorem 2.1. Let R > 0. For ε ∈ R we define the following measure-preserving perturbations Gε from BR ∩Ω:

Gε := {(r,Θ) : 0 < r < R + εh(Θ)+ s(ε),Θ ∈ ω}, |ε| ≤ ε0

where h ∈ C1(ω), and s is to be chosen such that s ∈ C2([−ε0, ε0]), s(0) = 0, and ν(Gε) = ν(BR) for |ε| ≤ ε0. Writing
φ = φ(r,Θ), and

Rε := R + εh + s(ε),

we have, for |ε| ≤ ε0,

ν(Gε) =


ω

 Rε

0
rN−1φ(r,Θ) dr dΘ = ν(BR) (2.4)

and

Pν(Gε,Ω) =


ω

(Rε)N−2φ(Rε,Θ)

(Rε)2 + |∇ΘRε|2 dΘ ≥ Pν(BR ∩Ω,Ω). (2.5)

Denote s1 := s′(0) and s2 := s′′(0). Differentiating (2.4) gives

0 =


ω

φ(R,Θ)(h(Θ)+ s1) dΘ, (2.6)

and

0 =


ω

((N − 1)φ(R,Θ)+ Rφr(R,Θ)) (h(Θ)+ s1)2 dΘ + s2R

ω

φ(R,Θ) dΘ. (2.7)

Using (2.5), we get
∂

∂ε
Pν(Gε,Ω)


ε=0

= 0

∂2

∂ε2
Pν(Gε,Ω)


ε=0

≥ 0.
(2.8)

The first condition in (2.8) gives
ω

((N − 1)φ(R,Θ)+ Rφr(R,Θ)) (h(Θ)+ s1) dΘ = 0. (2.9)

In other words, we have that

ω
((N − 1)φ + Rφr)v dθ = 0 for all functions v ∈ C1(ω) satisfying


ω
φv dθ = 0. Then the

Fundamental Lemma in the Calculus of Variations tells us that there is a number k(R) ∈ R such that

φr(R,Θ) = k(R)φ(R,Θ) ∀Θ ∈ ω. (2.10)

Integrating this with respect to R implies (2.1). Hence (2.6) and (2.7) give

0 =


ω

B(Θ)(h(Θ)+ s1) dΘ, (2.11)

0 =


N − 1

R
+

A′(R)
A(R)


·


ω

B(Θ)(h(Θ)+ s1)2 dΘ + s2


ω

B(Θ) dΘ. (2.12)

Next, assume that φ ∈ C2(Ω). Then, using (2.1) and the second condition in (2.8), a short computation shows that

0 ≤

(N − 2)(N − 1)RN−3A(R)+ 2(N − 1)RN−2(A′(R))N−1A′′(R)


·


ω

B(Θ)(h(Θ)+ s1)2 dΘ

+ s2

(N − 1)RN−2A(R)+ RN−1A′(R)

 
ω

B(Θ) dΘ + RN−3A(R)

ω

B(Θ) |∇Θ(h(Θ))+ s1|2 dΘ.
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Together with (2.12) this implies

0 ≤


−(N − 1)RN−3A(R)− RN−1 A

′2(R)
A(R)

+ RN−1A′′(R)


·


ω

B(Θ)(h(Θ)+ s1)2 dΘ

+ RN−3A(R)

ω

B(Θ)|∇Θ(h(Θ)+ s1)|2 dΘ.

This implies (2.2), in view of (2.11) and the definition of λ(B, ω). �

Remark 2.2. The value of λ(B, ω) is explicitly known in some special cases. For instance (see, e.g. [27]), if B ≡ 1, and
ω = SN−1, we have

λ(1, SN−1) = N − 1, (2.13)

the eigenvalue has multiplicity N , with corresponding eigenfunctions ui(x) = xi, (i = 1, . . . ,N), so that (2.2) reads as

A′2
≤ A′′(r)A(r), (2.14)

or equivalently, A is log-convex, that is,

A(r) = eg(r),

with a convex function g . It has been conjectured in [8], Conjecture 3.12, that for weights φ = A(r), with log-convex A, balls
BR, (R > 0), solve the isoperimetric problem in RN .
Some partial answers to this conjecture are given in [28] and [29], and numerical evidence are provided in [26].
It is interesting to note that Theorem 1.1, whose proof will be the object of the next section, and Theorem 2.1 imply the
following result.

Proposition 2.1. Let k ≥ 0, and

B = Bk(Θ) =


xN
|x|

k

, (x ∈ SN−1
+

). (2.15)

Then

λ(Bk, SN−1
+

) = N − 1 + k, (2.16)

with corresponding eigenfunctions

ui = xi, (i = 1, . . . ,N − 1). (2.17)

Proof. Let ui be given by (2.17). Theorems 1.1 and 2.1 imply that (2.2) holds, with ω = SN−1
+ , A(r) = rkecr

2
, (c ≥ 0), and

B(Θ) = Bk(Θ). Hence λ(Bk, SN−1
+ ) ≥ N − 1 + k − 2cr2 for all r > 0, which implies that λ(Bk, SN−1

+ ) ≥ N − 1 + k. The
assertion follows from the identities

SN−1
+

|∇Θui|
2Bk dΘ = (N − 1 + k)


SN−1
+

(ui)
2Bk dΘ, and

SN−1
+

uiBk dΘ = 0, (i = 1, . . . ,N − 1). �

The next result gives the sharp constant in a weighted Hardy inequality with respect to the measure xkN |x|m dx in the
quarter space {x1 > 0, xN > 0} (for related results in half spaces, see e.g., [30–34]).
First we introduce some notation. LetD be an open set inRN

+
, and ν ameasure given by dν = φ(x)dx, whereφ ∈ L∞

loc(R
N
+
) and

φ(x) > 0. The weighted Hölder space L2(D, dν) is the set of all measurable functions u : D → R such that

D u2 dν < +∞,

and the weighted Sobolev space W 1,2(D, dν) is the set of functions u ∈ L2(D, dν) that possess weak partial derivatives
uxi ∈ L2(D, dν), (i = 1, . . . ,N). Norms in these spaces are given respectively by

∥u∥L2(D,dν) :=


D
u2 dν

1/2

,

and

∥u∥W1,2(D,dν) :=


D
(|u2

+ |∇u|2) dν
1/2

.
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Definition 2.1. Let X be the set of all functions u ∈ C1(D) that vanish in a neighborhood of ∂D\{xN = 0}. Then let V 2(D, dν)
be the closure of X in the norm ofW 1,2(D, dν).

Next, let

Q := {x ∈ RN
: x1 > 0, xN > 0}, (2.18)

and specify

dν := xkN |x|m dx, (2.19)

where k ≥ 0 andm ∈ R.

Theorem 2.2. With Q and ν given by (2.18) and (2.19) respectively, we have
Q

|∇u|2 dν ≥ C(k,m)

Q

u2

|x|2
dν, (2.20)

for all u ∈ V 2(Q , dν), where

C(k,m) =


N + m + k − 2

2

2

+ N + k − 1 =


N + m + k

2

2

− m. (2.21)

The constant C(k,m) in (2.20) is sharp, and is not attained for any nontrivial function u.

Proof. We proceed as in [33, proof of Proposition 4.1].
Extend u to an odd function onto RN

+
by setting u(−x1, x2, . . . , xN) := −u(x), (x ∈ Q ). Writing u = u(r,Θ) and

Bk(Θ) = w(x) = xkN |x|−k, we have for a.e. r > 0,
SN−1
+

u(r,Θ)Bk(Θ) dΘ = 0,

and thus by (2.16),
SN−1
+

|∇Θu(r,Θ)|2Bk(Θ) dΘ ≥ (N + k − 1)


SN−1
+

[u(r,Θ)]2Bk(Θ) dΘ. (2.22)

Further, the one-dimensional Hardy inequality (see [35]) tells us that for a.e.Θ ∈ SN−1
+ ,

+∞

0
rN+m+k−1

[ur(r,Θ)]2 dr ≥


N + m + k − 2

2

2  +∞

0
rN+m+k−3

[u(r,Θ)]2 dr. (2.23)

Integrating (2.22) and (2.23) gives
RN

+

|∇u|2 dν =


+∞

0


SN−1
+


[ur ]

2
+ r−2

|∇Θu|2

rN−1+m+kBk dΘ dr

≥


N + m + k − 2

2

2

+ N + k − 1


∞

0


SN−1
+

u2rN+m+k−3Bk dΘ dr

= C(k,m)


RN
+

u2

|x|2
dν.

The constant C(k,m) is not attained since the constant is not attained in the one-dimensional Hardy inequality. Moreover,
the exactness of C(k,m) follows in a standardmanner by considering functions of the form u = un = x1|x|(−N−m−k)/2ψn(|x|),
(n ∈ N), where ψn ∈ C∞

0 ((0,+∞)), 0 ≤ ψn ≤ 1, |ψ ′
n| ≤ 4/n, ψn(t) = 0 for t ∈ (0, (1/n)] ∪ [2n,+∞), and ψn(t) = 1 for

t ∈ [(2/n), n], and then passing to the limit n → ∞. The details are left to the reader. �

Theorem 2.1 has some further consequences when the coneΩ contains the wedge

W+ := {x = (x1, . . . , xN) : xi > 0, i = 1, . . . ,N},

and if

φ(x) =

N
i=1

φi(xi), (2.24)

for some smooth functions φi, (i = 1, . . . ,N).
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In the following, let

ω+ := W+ ∩ SN−1.

We first show

Lemma 2.1. Assume that φ ∈ C2(W+) satisfies (2.1) and (2.24), where A, φi ∈ C2((0,+∞)) ∩ C([0,+∞)), B ∈ C2(ω+) ∩

C(ω+), φi(xi) > 0 for xi > 0, (i = 1, . . . ,N), A(r) > 0 for r > 0, and B(Θ) > 0 for Θ ∈ ω+. Then

φ(x) = a
N
i=1

xkii e
c|x|2 , x ∈ W+, (2.25)

where a > 0, ki ≥ 0, (i = 1, . . . ,N), and c ∈ R.

Proof. Differentiating the equation log[A(r)B(Θ)] = log[
N

i=1 φi(xi)] with respect to r gives

rA′(r)
A(r)

=

N
i=1

xiφ′

i (xi)
φi(xi)

.

Differentiating this with respect to xi yields

A′(r)
rA(r)

+
A′′(r)
A(r)

−
(A′(r))2

(A(r))2
=

φ′

i (xi)
xiφi(xi)

+
φ′′

i (xi)
φi(xi)

−
(φ′

i (xi))
2

(φi(xi))2
= 4c, (i = 1, . . . ,N),

for some number c ∈ R. In other words,

d
dxi


xiφ′

i (xi)
φi(xi)


= 4cxi, (i = 1, . . . ,N).

Integrating this and dividing by xi gives

φ′

i (xi)
φi(xi)

= 2cxi +
ki
xi
, (i = 1, . . . ,N),

for some numbers ki ∈ R, (i = 1, . . . ,N). Then another integration leads to

log[φi(xi)] = bi + ki log xi + c(xi)2, (bi ∈ R),

that is,

φi(xi) = aix
ki
i e

c(xi)2 ,

where ai = ebi , (i = 1, . . . ,N). Since φi ∈ C([0,+∞)), and φi(xi) > 0 for xi > 0, we have ai > 0, and ki ≥ 0, (i = 1, . . . ,N).
Now (2.25) follows with a =

N
i=1 ai. �

As pointed out in the Introduction, we can specify the expression of the density φ of the measure, when the coneΩ is RN
+

and φ is factorized.

Theorem 2.3. AssumeΩ = RN
+
and consider Problem (1.3), where φ ∈ C1(RN

+
)∩C(RN

+), and satisfies (2.24), for some functions
φi ∈ C2(R), φi(t) > 0 for t ∈ R, (i = 1, . . . ,N − 1), and φN ∈ C2((0,+∞)) ∩ C([0,∞)), φN(t) > 0 for t > 0. Suppose that
Iν(m) = Pν(BR ∩ RN

+
,RN

+
) for m = ν(BR ∩ RN

+
). Then

φ(x) = axkNe
c|x|2 , (2.26)

for some numbers a > 0, k ≥ 0 and c ≥ 0.

Proof. By Theorem 2.1 we have φ = A(r)B(Θ)with smooth positive functions A and B, and

λ(B, SN−1
+

) ≥ N − 1 + r2

(A′)2

A(r)2
−

A′′(r)
A(r)


∀r > 0. (2.27)

Then, Lemma 2.1 shows that φ satisfies (2.25). Since ϕ(x) > 0 whenever xN > 0, and xi = 0, for some i ∈ {1, . . . ,N − 1}, it
follows that we must have ki = 0, (i = 1, . . . ,N − 1). This proves (2.26), for some numbers a > 0, k ≥ 0 and c ∈ R. Hence,
B(Θ) = [xN |x|−1

]
k and A(r) = arkecr

2
. Therefore (2.16) and (2.27) imply that

N − 1 + k ≥ N − 1 + k − 2cr2 ∀r > 0.

Hence we must have c ≥ 0. �
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We end this section by analyzing the case where the coneΩ is RN
\ {0}.

Theorem 2.4. Assume Ω = RN
\ {0} and consider Problem (1.3), with φ ∈ C2(RN

\ {0}) ∩ C(RN), φ(x) > 0 for x ≠ 0, and
satisfies (2.24), where φi ∈ C2(R \ {0}) ∩ C(R), and φi(t) > 0 for t ≠ 0, (i = 1, . . . ,N). Suppose that Iν(m) = Pν(BR) for
m = ν(BR). Then

φ(x) = aec|x|
2
, (2.28)

for some numbers a > 0, and c ≥ 0.

Proof. By Theorem 2.1 we have φ = A(r)B(Θ)with smooth positive functions A and B, and

λ(B, SN−1) ≥ N − 1 + r2

A′(r)2

A(r)2
−

A′′(r)
A(r)


∀r > 0. (2.29)

Then, Lemma 2.1 shows thatφ satisfies (2.25). Since ϕ(x) > 0whenever x ≠ 0 and xi = 0, for some i ∈ {1, . . . ,N}, it follows
that ki = 0, (i = 1, . . . ,N). This proves (2.28), for some numbers a > 0, and c ∈ R, that is, B(Θ) ≡ 1 and A(r) = aecr

2
.

Hence, (2.13) and (2.29) imply that A is log-convex, that is, we must have c ≥ 0. �

3. A Dido’s problem

In this section we provide the proof of Theorem 1.1. As pointed out in the Introduction, we have to find the set having
minimumµ-perimeter among all the subsets of RN

+
having prescribedµ-measure, where µ is the measure defined in (1.7).

In order to face such a problem we first show a simple inequality for measures defined on the real line related to dµ. Then
the isoperimetric problem is addressed in the plane: the one-dimensional results allows one to restrict the search of optimal
sets to the ones which are starlike with respect to the origin. Finally Theorem 1.1 is achieved in its full generality.

3.1. Dido’s problem on the real line

Let R+ = (0,+∞). The following isoperimetric inequality holds.

Proposition 3.1. Let φ : R+ → R+ be a nondecreasing continuous function, dν = φ(x)dx and M be a measurable subset of
R+ with ν(M) < +∞. Then

Pν(M) ≥ Pν(S(M)), (3.1)

where S(M) denotes the interval (0, d), with d ≥ 0 chosen such that ν(M) = ν(S(M)).

Proof. First assume thatM is of the form

M = ∪
k
j=1


aj, bj


, (3.2)

with

0 ≤ aj < aj+1, aj < bj, bj < bj+1 < +∞,

for all j ∈ {1, . . . , k − 1}. By the properties of the weight function φ we have that bk ≥ d and hence

Pν(M) =

k
j=1


φ(aj)+ φ(bj)


≥ φ(0)+ φ(d) = Pν(S(M)). (3.3)

Next let M be measurable and ν(M) < +∞. By the basic properties of the perimeter, there exists a sequence of sets
{Mn} of the form (3.2) such that limn→+∞ ν(M∆Mn) = 0 and limn→+∞ Pν(Mn) = Pν(M). The first limit implies that also
limn→+∞ Pν(S(Mn)) = Pν(S(M)), so that the assertion follows from inequality (3.3). �

3.2. Dido’s problem in two dimensions

In our study of the measure dµ, an important role will be played by the following isoperimetric theorem (see [2,8])
relative to the measure

dτ = exp(c |x|2)dx, x ∈ Rm, with m ≥ 1 and c ≥ 0.
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Theorem 3.1. If M is any measurable subset of RN and M⋆ is the ball of RN centered at the origin having the same τ -measure
of M, then

Pτ (M) ≥ Pτ (M⋆). (3.4)

We write (x, y) for points in R2, and we consider in R2
+
the measure

dµ = yk exp

c(x2 + y2)


dx dy,

where c ≥ 0 and k ≥ 0. IfM is a measurable subset of R2
+
, given any numberm > 0, the isoperimetric problem on R2

+
reads

as:

Iµ(m) := inf{Pµ(M), with M : µ(M) = m}. (3.5)

The following result holds true.

Theorem 3.2. Let m > 0. Then Iµ(m) is attained for the half-disk Br ∩ R2
+
, centered at zero, having µ-measure m. Equivalently

there exists r > 0 such that

Iµ(m) = Pµ(Br ∩ R2
+
) = exp


cr2

rk+1

 π

0
sink θ dθ = B


k + 1
2

,
1
2


exp


cr2

rk+1, (3.6)

where B denotes the Beta function.

Proof. If k = 0, and c = 0 (unweighted case), the result is well-known. Further, if c > 0 and k = 0, that is,
dµ = ec(x

2
+y2) dx dy, the result follows from Theorem 3.1 via reflexion about the x-axis. Finally, the result has been shown

in the case c = 0 and k > 0 by Maderna and Salsa, [10], (see also [36]).

Therefore we may restrict ourselves to the case that both c and k are positive.
Our proof requires some technical effort, mainly due to the degeneracy of the measure on the x-axis. The strategy is as

follows: First we use symmetrization arguments in order to reduce the isoperimetric problem to setswhich are starlikew.r.t.
the origin (Step 1). Then we obtain some a priori estimates for a minimizing sequence (Step 2). This allows us to show that
a (starlike) minimizer exists (Step 3), which is also bounded (Step 4) and smooth (Step 5). In Step 6 we evaluate the second
variation of the Perimeter functional, and we show that the minimizer is a half-disk centered at the origin.

Throughout our proof, C will denote a generic constant, which may vary from line to line.

Step 1: Symmetrization

Our aim is to simplify the isoperimetric problem using Steiner symmetrization in two directions. This method has already
been employed in the case c = 0 (see [10,36]).

Let {Dn} ⊂ R2
+
be a minimizing sequence for problem (3.5), i.e.

µ(Dn) = m ∀n ∈ N and lim
n→+∞

Pµ(Dn) = Iµ(m),

where, without loss of generality, we may assume that the sets Dn are smooth.
Let D be a smooth set of R2

+
. We denote by Sx(D) and Sy(D) the Steiner symmetrization in the x-direction, with respect to

the measure dµx = ecx
2
dx, and the Steiner symmetrization in the y-direction, with respect to the measure dµy = ecy

2
yk dy,

of D, respectively.
More precisely, Sx(D) is the subset of R2

+
whose cross sections parallel to the x-axis are open intervals centered at the

y-axis, and such that their µx-lengths are equal to those of the corresponding cross sections of D.
The set Sy(D) is defined in a similar way: its cross sections parallel to the y-axis are open intervals with an endpoint lying

on the x-axis, and such that their µy-lengths are equal to those of the corresponding cross sections of D.
Now consider the sequence of setsMn = Sy(Sx(Dn)). By Proposition 3.1 and Theorem 3.1, we have that Pµ(Sy(Sx(Dn))) ≤

Pµ(Dn) and, by Cavalieri’s principle, µ(Sy(Sx(Dn))) = µ(Dn). Therefore {Mn} is still a minimizing sequence for (3.5). On
one hand, the sets Mn can lose regularity under symmetrization: the symmetrized sets are not more than locally Lipschitz
continuous, in general. On the other hand, they acquire some nice geometrical property: they are all starlike with respect to
the origin. Thus, introducing polar coordinates (r, θ) as x = r cos θ and y = r sin θ , we have

Mn = {(r, θ) : 0 < r < ρn(θ), θ ∈ (0, π)}, ∀n ∈ N, (3.7)
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for some functions ρn(θ) : (0, π) → (0,+∞). Note that, defining ρn(0) := limθ→0+ ρn(θ) =: ρn(π), and ρn(π/2) :=

limθ→π/2− ρn(θ), we have also have ρn ∈ C([0, π]). Then

(i) the functions ρn(θ) are locally Lipschitz in (0, π/2);
(ii) ρn(θ) = ρn(π − θ), ∀n ∈ N, ∀θ ∈ (0, π);
(iii) the functions xn(θ) := ρn(θ) cos θ and yn(θ) := ρn(θ) sin θ are nonincreasing and nondecreasing, respectively, on

(0, π/2).

Hence we may assume that the minimizing sequence is of the form (3.7), with conditions (i)–(iii) in force. Under these
conditions, the set Mn, its µ-measure and µ-perimeter are uniquely determined by the function ρn(θ). More precisely,
setting

z := sink θ, θ ∈ [0, π],

F(r) :=

 r

0
ect

2
tk+1 dt, and

G(r, p) := ecr
2
rk

r2 + p2, r > 0, p ∈ R,

we find that

µ(Mn) =

 π

0
F(ρn)z dθ =: µ(ρn), and

Pµ(Mn) =

 π

0
G(ρn, ρ ′

n)z dθ =: Pµ(ρn).

With this notation, the isoperimetric problem (3.5) now reads as

Minimize Pµ(ρ)over

K := {ρ : (0, π/2) ∪ (π/2, π) → (0,+∞) : ρ satisfies (i)-(iii) and µ(ρ) = m}. (3.8)

Step 2: Some estimates

Next we will obtain some uniform estimates for the minimizing sequence {ρn} of problem (3.8).
Condition (iii) implies

− ρn(θ) cot θ ≤ ρ ′

n(θ) ≤ ρn(θ) tan θ a.e. on (0, π/2), n ∈ N. (3.9)

Set

y0n := sup
θ∈(0,π/2)

yn(θ) = yn(π/2) = ρn(π/2).

We claim that

sup
n∈N

y0n =: y0 < +∞. (3.10)

Indeed, since {Pµ(ρn)} is a bounded sequence, we obtain for every n ∈ N,

C ≥ Pµ(ρn)

= 2
 π/2

0
ec(x

2
n(θ)+y2n(θ))ykn(θ)


(x′

n(θ))
2 + (y′

n(θ))
2 dθ

≥ 2
 π/2

0
ecy

2
n(θ)ykn(θ)y

′

n(θ)dθ = 2
 y0n

0
ect

2
tkdt,

and (3.10) follows.
From (3.9) and (3.10), we further deduce that for every θ ∈ (0, π),

ρn(θ) =
yn(θ)
sin θ

≤
yn(π/2)
sin θ

≤
y0

sin θ
∀n ∈ N. (3.11)

Conditions (3.11) and (3.9) imply that for every δ ∈ (0, π/4) there is a number dδ > 0 such that

sup
θ∈(δ,π/2−δ)


ρn(θ),

ρ ′

n(θ)
 ≤ dδ. (3.12)
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Next we claim:
There exists a number d1 > 0, such that

ρn(θ) ≥ d1 ∀θ ∈ (0, π), and ∀n ∈ N. (3.13)

Assume (3.13) was not true. Then the fact that xn(θ) and yn(θ) are nonincreasing, respectively nondecreasing, ∀n ∈ N,
means that there is a subsequence, still labelled as {ρn}, such that limn→∞ ρn(π/4) = 0. Set δn := ρn(π/4)/

√
2 and note

that xn(π/4) = yn(π/4) = δn. In view of (3.11) we have that

lim
n→∞

µ(Mn ∩ {|x| < δn}) = 0.

Since µ(ρn) = m, this implies that there is a number d2 > 0, such that for all n ∈ N,

d2 ≤ µ(Mn ∩ {x > δn}) = −

 π/4

0
x′

n(θ)e
cx2n(θ)

 yn(θ)

0
ect

2
tk+1 dt dθ

≤ −(δn)
2
 π/4

0
x′

n(θ)e
c(x2n(θ)+y2n(θ))ykn(θ) dθ. (3.14)

On the other hand, the sequence {Pµ(ρn)} is bounded, so that

C ≥ Pµ(ρn)

≥

 π/4

0
ec(x

2
n(θ)+y2n(θ))ykn(θ)


(x′

n(θ))
2 + (y′

n(θ))
2 dθ

≥ −

 π/4

0
x′

n(θ)e
c(x2n(θ)+y2n(θ))ykn(θ) dθ. (3.15)

Hence we obtain d2 ≤ δ2nC for all n ∈ N, which is a contradiction.
Next, we claim that there is a number d3 > 0 such that holds for every θ ∈ (0, π/2) and for all n ∈ N, there holds

ykn(θ)
 xn(θ)

0
ect

2
dt ≤ d3. (3.16)

Consider the setMn(θ) := {(x, y) ∈ Mn : y ≤ yn(θ)} .

It is easy to verify that

1
2


Pµ(Mn)− Pµ(Mn(θ))


=

 π/2

θ

ec(x
2
n(τ )+y2n(τ ))yn(τ )k


(x′

n(τ ))
2 + (y′

n(τ ))
2 dτ −

 xn(θ)

0
ec(t

2
+y2n(θ))ykn(θ) dt

≥

 π/2

θ

(−x′

n(θ))e
cx2n(τ )


ey

2
n(τ )ykn(τ )− ey

2
n(θ)ykn(θ)


dτ ≥ 0.

Hence

C ≥ Pµ(Mn) ≥ Pµ(Mn(θ)) ≥ 2ykn(θ)e
cy2n(θ)

 xn(θ)

0
ect

2
dt, (3.17)

and (3.16) follows.
Below we will frequently make use of the following limit, which holds for all α > −1,

lim
z→+∞

 z
0 ect

2
tα dt

ecz2zα−1
=

1
2c
. (3.18)

In view of (3.18) with α = 0, and (3.17), and since xn(θ) ≥ d/
√
2 for θ ∈ (0, π/4), we obtain

C ≥ ykn(θ)e
cy2n(θ)

ecx
2
n(θ)

xn(θ)
, ∀θ ∈ (0, π/4). (3.19)

Since yn(θ) ≥ (1/2)θρn(θ) for θ ∈ (0, π/4), and xn(θ) ≤ ρn(θ), we further deduce from (3.19),

C ≥ ρk−1
n (θ)θ kecρ

2
n (θ), ∀θ ∈ (0, π/4). (3.20)
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Now recall (3.13), and limz→+∞ ecz
2/2zk−1

= +∞. Hence (3.20) shows that there is a number d4 > 0 such that for all n ∈ N,

ρn(θ) ≤


d4 −

2k
c

ln θ, ∀θ ∈ (0, π/4). (3.21)

Finally we show:

For every ϵ ∈ (0,m) there is a δ ∈ (0, π/2), such that (3.22)
µ(Mn ∩ {δ < θ < π − δ}) > m − ϵ, ∀n ∈ N.

Indeed, (3.18), (3.20) and (3.21) with α = k + 1, show that

µ(M ∩ {0 < θ < s}) =

 s

0
sink θ

 ρn(θ)

0
ect

2
tk+1 dt dθ

≤ C
 s

0
θ kecρ

2
n (θ)ρk

n(θ) dθ

≤ C
 s

0


d4 −

2k
c

ln θ dθ → 0, as s → 0. (3.23)

Now the claim (3.22) follows from the uniform estimate (3.23) and from the fact that for every s ∈ (0, π/2),

m/2 = µ(Mn ∩ {0 < θ < s})+ µ(Mn ∩ {s < θ < π/2}).

Step 3: The minimum is achieved.
In this step we show that a minimizer of problem (3.8) exists.

In view of the properties (i)–(iii), (3.9), and the estimates (3.11)–(3.13) and (3.21) there exists a function ρ : (0, π/2) ∪

(π/2, π) → [0,+∞)which is locally Lipschitz continuous, and a subsequence, still denoted by {ρn}, such that

ρn → ρ uniformly on compact subsets of (0, π/2), (3.24)

ρ(θ) = ρ(π − θ) ∀θ ∈ (0, π/2), (3.25)

−ρ(θ) cot θ ≤ ρ ′(θ) ≤ ρ(θ) tan θ a.e. on (0, π/2), (3.26)

ρ(θ) ≤
y0

sin θ
∀θ ∈ (0, π/2), (3.27)

ρ(θ) ≥ d1 ∀θ ∈ (0, π/2), (3.28)

sup
θ∈(δ,π/2−δ)


ρ(θ),

ρ ′(θ)
 ≤ dδ, ∀δ ∈ (0, π/4), (3.29)

ρ(θ) ≤


d4 −

2k
c

ln θ, ∀θ ∈ (0, π/4). (3.30)

Note, setting x(θ) := ρ(θ) cos θ , and y(θ) := ρ(θ) sin θ , condition (3.26) implies that the functions x(θ) and y(θ) are
nonincreasing, respectively nondecreasing on (0, π/2). Further, defining ρ(π/2) := limθ→π/2 ρ(θ), we see that ρ ∈

C((0, π)).
Let

M := {(r, θ) : 0 < r < ρ(θ), θ ∈ (0, π)},

and Pµ(ρ) := Pµ(M). We claim

µ(M) = m. (3.31)

Indeed, the estimate (3.22) shows

For every ϵ ∈ (0,m) there is a δ ∈ (0, π/2), such that
µ(M ∩ {δ < θ < π − δ}) ≥ m − ϵ.

Since we also have µ(M) ≤ m, (3.31) follows.
Finally, the lower semicontinuity of the perimeter shows that

Iµ(m) = lim
n→∞

Pµ(Mn) ≥ Pµ(M). (3.32)

But ρ ∈ K , therefore Iµ(m) = Pµ(M), and M is a minimizer.



F. Brock et al. / Nonlinear Analysis 75 (2012) 5737–5755 5749

Note that ourweight functionφ(x, y) := ykec(x
2
+y2) is positive andφ ∈ C∞(R2

+
). Due to a regularity result ofMorgan [37],

Corollary 3.7 and Remark 3.10, this implies that ∂M ∩ R2
+
is a one-dimensional C1-manifold that is locally analytic. In view

of the symmetry ofM this implies that ρ is differentiable at π/2, with limθ→π/2 ρ
′(θ) = ρ ′(π/2) = 0. Using the properties

(3.25)–(3.30) this implies that ρ ∈ C∞((0, π)).
Then standard Calculus of Variations (see [10]) shows that there is a number γ ∈ R – a Lagrangian multiplier – such that

−
d
dθ


Gpz


+ Grz = γ F ′z on (0, π). (3.33)

Here, and in the following, the functions G, F and their derivatives are evaluated at (ρ, ρ ′).
Step 4 : The minimizer is bounded.
We will argue by contradiction, that is, we assume that ρ was unbounded. Then (3.26) would imply that

lim
t→0

ρ(t) = +∞. (3.34)

First we claim that (3.34) further means that there exists a sequence tn → 0 such that

− ρ ′(tn) ≥ ρ3(tn). (3.35)

Indeed, assume (3.35) was not true. Then there exists a number t0 > 0 such that

− ρ ′(t) < ρ3(t) for t ∈ (0, t0). (3.36)

By the estimate (3.30) we can find a number t1 ∈ (0, t0) such that −2t1 + (ρ(t1))−2
=: δ0 > 0. Integrating (3.36) gives

1
ρ2(t)

> 2t − 2t1 +
1

(ρ(t1))2
= δ0 + 2t ∀t ∈ (0, t1),

which implies thatρ is bounded, a contradiction. Hence (3.35) follows. Note that (3.35), togetherwith our assumption (3.34),
implies that

lim
n→∞

ρ(tn)/ρ ′(tn) = 0. (3.37)

Using the Euler equation (3.33), a short calculation shows that

d
dθ


G − ρ ′Gp − γ F


= ρ ′Gp

z ′

z
. (3.38)

Integrating (3.38) on the interval (tn, π/2) gives

γ

 ρ(tn)

0
ecs

2
sk+1ds − ec(ρ(tn))

2
(ρ(tn))k+2 (ρ(tn))2 + (ρ ′(tn))2

−1/2

= −c1 +

 π/2

tn
ec(ρ(t))

2
(ρ(t))k(ρ ′(t))2


(ρ(t))2 + (ρ ′(t))2

−1/2
k cot t dt, (3.39)

where we have put

c1 = (G − ρ ′Gp − γ F)|θ=π/2.

In view of (3.34), (3.35), (3.37) and (3.18), with α = k + 1, we find that

lim
n→∞

γ
 ρ(tn)
0 ecs

2
sk+1ds

ec(ρ(tn))2(ρ(tn))k+2

(ρ(tn))2 + (ρ ′(tn))2

−1/2 = +∞. (3.40)

Hence the left-hand side of Eq. (3.39) tends to +∞ as n → +∞. Using L’Hopital’s rule, (3.34), (3.35) and (3.37), we obtain
from (3.40),

1 = lim
n→∞

γ
 ρ(tn)
0 ecs

2
sk+1ds − ec(ρ(tn))

2
(ρ(tn))k+2


(ρ(tn))2 + (ρ ′(tn))2

−1/2

−c1 +
 π/2
tn

ec(ρ(t))2(ρ(t))k(ρ ′(t))2

(ρ(t))2 + (ρ ′(t))2

−1/2 k cot t dt

= lim
n→∞

γ
 ρ(tn)
0 ecs

2
sk+1ds π/2

tn
ec(ρ(t))2(ρ(t))k(ρ ′(t))2


(ρ(t))2 + (ρ ′(t))2

−1/2 k cot t dt

= lim
n→∞

γ ρ ′(tn)ec(ρ(tn))
2
(ρ(tn))k+1

−ec(ρ(tn))2(ρ(tn))k(ρ ′(tn))2

(ρ(tn))2 + (ρ ′(tn))2

−1/2 k cot tn
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= lim
n→∞

γ ρ ′(tn)ec(ρ(tn))
2
(ρ(tn))k+1

ec(ρ(tn))2(ρ(tn))kρ ′(tn)k cot tn

= lim
n→∞

γ ρ(tn)
k cot tn

= lim
n→∞

γ

k
tnρ(tn).

But the last limit is zero in view of (3.30), and we have obtained a contradiction. In other words, ρ is bounded on (0, π).
Putting ρ(0) := limt→0 ρ(t) =: ρ(π), we then have

ρ ∈ C([0, π]). (3.41)

Step 5: ρ ′′ is bounded.
We will first need some integrability properties of the functions

Gr = ecρ
2
ρk 

[2cρ + (k/ρ)]{ρ2
+ (ρ ′)2}1/2 + ρ{ρ2

+ (ρ ′)2}−1/2 ,
Gp = ecρ

2
ρkρ ′

{ρ2
+ (ρ ′)2}−1/2,

F ′
= ecρ

2
ρk+1.

By (3.28) and (3.41), Gp and F ′ are bounded on (0, π). Moreover, since Pµ(ρ) < +∞, we also have Grz ∈ L1((0, π)).
Integrating (3.33) between 0 and t ∈ (0, π/2) gives

− Gp(ρ(t), ρ ′(t))z(t) =

 t

0
(γ F ′

− Gr)z dθ

=

 t

0
zecρ

2
ρk

γ ρ − (2cρ + (k/ρ))


ρ2

+ (ρ ′)2
1/2

− ρ

ρ2

+ (ρ ′)2
−1/2


dθ

≤ γ

 t

0
ecρ

2
ρk+1z dθ ≤ C

 t

0
z dθ ≤ Ctk+1. (3.42)

On the other hand, if ρ ′(t) < 0, then (3.28) and the boundedness of ρ show that

− Gp(ρ(t), ρ ′(t))z(t) = −ec(ρ(t))
2
(ρ(t))kρ ′(t)


ρ2(t)+ (ρ ′)2

−1/2
sink t

≥ −Cρ ′(t)

C2

+ (ρ ′)2
−1/2

tk. (3.43)

Furthermore, the estimate (3.26) and the boundedness of ρ imply that there is a constant d5 > 0 such that

ρ ′(t) ≤ d5t ∀t ∈ (0, π/2). (3.44)

Now (3.43), (3.42) and (3.44) imply that

ρ ′(t)/t is bounded on (0, π/2). (3.45)

In particular we have ρ ∈ C1([0, π]) and ρ ′(0) = ρ ′(π) = 0.
Finally, using (3.33), a short calculation gives

γ ρ =
−ρ2ρ ′′

+ ρ(ρ ′)2

(ρ2 + (ρ ′)2)3/2
−

[(k/ρ)+ 2cρ](ρ ′)2 + kρ ′ cot t
(ρ2 + (ρ ′)2)1/2

. (3.46)

By (3.28), (3.41) and (3.45) this implies that

ρ ′′
∈ L∞((0, π)). (3.47)

Step 6:M is a half-disk.
Note first that the derivatives Grr , Grp, Gpp and F ′′ are bounded, in view of the properties (3.28), (3.41) and (3.45).

Since ρ is a minimizer of (3.8), the second variation of Pµ at ρ in K is nonnegative. This means that

0 ≤

 π

0


Grrκ

2
+ 2Grpκκ

′
+ Gpp(κ

′′)2 − γ F ′′κ2 z dθ, (3.48)

for every κ ∈ W 1,2((0, π)) such that π

0
F ′κz dθ = 0. (3.49)
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Furthermore, dividing (3.33) by z and then differentiating yields

Grrρ
′
+ Grpρ

′′
−

d
dθ


Grpρ

′
+ Gppρ

′′

−

Gprρ

′
+ Gppρ

′′
 z ′

z
− Gp


z ′

z

′

= γ F ′′ρ ′ in (0, π). (3.50)

Multiplying (3.50) by ρ ′z and then integrating by parts, we obtain π

0
Gpρ

′


z ′

z

′

z dθ =

 π

0


Grr(ρ

′)2 + 2Grpρ
′ρ ′′

+ Gpp(ρ
′′)2 − γ F ′′(ρ ′)2


z dθ. (3.51)

Note that we may use (3.48) with κ = ρ ′
∈ W 1,∞((0, π)). This shows that the right-hand side of (3.51) is nonnegative. On

the other hand, π

0
Gpρ

′


z ′

z

′

z dθ = −k
 π

0
ecρ

2
ρk ρ2

+ (ρ ′)2
−1/2

(ρ ′)2 sink−2 θ dθ ≤ 0. (3.52)

Hence  π

0
ecρ

2
ρk ρ2

+ (ρ ′)2
−1/2

(ρ ′)2 sink−2 θ dθ = 0, (3.53)

which implies that ρ ′
= 0 in [0, π]. This means that ρ is constant in [0, π], and the result follows. �

3.3. The N-dimensional case

Proof of Theorem 1.1. We proceed by induction over the dimension N . Note that the result for N = 2 is Theorem 3.2.
Assume that the assertion holds true for sets in RN , for some N ≥ 2, and more precisely, for all measures of the type

dµ = xkN exp{c|x|2} dx

where k ≥ 0 and c ≥ 0.
We write y = (x′, xN , xN+1) for points in RN+1, where x′

∈ RN−1, and xN , xN+1 ∈ R. Let a measure ν on

RN+1
+

:= {y = (x′, xN , xN+1) ∈ RN+1
: xN+1 > 0}

be given by

dν = xkN+1 exp{c(|x
′
|
2
+ x2N + x2N+1)} dy.

We define two measures ν1 and ν2 by

dν1 = exp{c|x′
|
2
} dx′, and

dν2 = xkN+1 exp{c(x
2
N + x2N+1)} dxNdxN+1,

and note that dν = dν1dν2.
LetM be a subset of RN+1

+ having finite and positive ν-measure.
We define 2-dimensional slices

M(x′) := {(xN , xN+1) : (x′, xN , xN+1) ∈ M}, (x′
∈ RN−1).

Let M ′
:= {x′

∈ RN−1
: 0 < ν2(M(x′))}, and note that ν2(M(x′)) < +∞ for a.e. x′

∈ M ′. For all those x′, let H(x′) be the
half disc in R2

+
centered at (0, 0) with ν2(M(x′)) = ν2(H(x′)). (For convenience, we put H(x′) = ∅ for all x′

∈ M ′ with
ν2(M(x′)) = +∞.) By Theorem 3.2, we have

Pν2(H(x
′)) ≤ Pν2(M(x

′)) for a.e. x′
∈ M ′. (3.54)

Let

H := {y = (x′, xN , xN+1) : (xN , xN+1) ∈ H(x′), x′
∈ M ′

}.

The product structure of the measure ν tells us that
(i) ν(M) = ν(H), and
(ii) the isoperimetric property for slices, (3.54), carries over toM , that is,

Pν(H) ≤ Pν(M), (3.55)

(see for instance Theorem 4.2 of [38]).
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Note again, the slice H(x′) = {(xN , xN+1) : (x′, xN , xN+1) ∈ H} is a half disc {(r cos θ, r sin θ) : 0 < r < R(x′), θ ∈ (0, π)},
with 0 < R(x′) < +∞, (x′

∈ M ′). Set

K := {(x′, r) : 0 < r < R(x′), x′
∈ M ′

},

and introduce a measure α on RN
+
by

dα := akrk+1 exp{c(|x′
|
2
+ r2)} dx′dr,

where

ak :=

 π

0
sink θ dθ = B


k + 1
2

,
1
2


.

An elementary calculation then shows that

ν(H) = α(K),

and

Pν(H) = Pα(K).

Let BR denote the open ball in RN centered at the origin, with radius R, and choose R > 0 such that

α(BR ∩ RN
+
) = α(K).

By the induction assumption it follows that

Pα(BR ∩ RN
+
) ≤ Pα(K). (3.56)

Finally, letM⋆ be the half ball in RN+1
+ centered at the origin, with radius R,

M⋆
:= {y = (x′, xN , xN+1) : |x′

|
2
+ x2N + x2N+1 < R2, xN+1 > 0}.

Then

ν(M⋆) = ν(M)

and

Pν(M⋆) = Pα(BR ∩ RN
+
).

Together with (3.55) and (3.56) we find

Pν(M⋆) ≤ Pν(M),

that is, the isoperimetric property holds for N + 1 in place of N dimensions. The theorem is proved. �

4. Application to a class of degenerate elliptic equations

4.1. Notation and preliminary results

First we introduce the notion of weighted rearrangement. For an exhaustive treatment of rearrangements we refer to
[21,39–42].
Let the measure µ be given by (1.7), and let M be a measurable subset of RN

+
. The distribution function of a Lebesgue

measurable function u : M → R, with respect to dµ, is the functionmµ defined by

mµ(t) = µ ({x ∈ M : |u(x)| > t}) , ∀t ≥ 0.

The decreasing rearrangement of u is the function u∗ defined by

u∗(s) = inf

t ≥ 0 : mµ(t) ≤ s


, ∀s ∈ (0, µ (M)] .

Let Cµ be the µ-measure of B1 ∩ RN
+
, that is,

Cµ =
1
2
(N − 1)ωN−1B


k + 1
2

,
N − 1

2


,

and let a function ψ (r) be defined by

ψ (r) =

 r

0
exp


ct2

tN+k−1dt.
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LetM⋆ be defined as in Theorem 1.1, that is,

M⋆
= Br⋆ ∩ RN

+
, (4.1)

where

r⋆
= ψ−1


µ(M)
Cµ


. (4.2)

The rearrangement u⋆ of u, by its definition given in (1.10), is

u⋆(x) = u∗

Cµψ (|x|)


, ∀x ∈ M⋆.

The isoperimetric inequality in Theorem 3.1 can be also stated as follows

Pµ(M) ≥ Iµ(µ(M)),

where Iµ(τ ) is the function such that Pµ(M⋆) = Iµ(µ(M⋆)), or equivalently

Iµ(τ ) = Cµ exp


c

ψ−1


τ

Cµ

2
ψ−1


τ

Cµ

N+k−1

. (4.3)

The fact that half balls BR ∩ RN
+
are isoperimetric for the weighted measureµ imply a Polya-Szegö-type inequality (see [43],

p. 125).

Theorem 4.1. Let D be an open set with finite µ-measure, and let the space V 2(D, dµ) be given by Definition 2.1 Then we have
for every function u ∈ V 2(D, dµ),

D
|∇u|2dµ ≥


D⋆

|∇u⋆
|
2dµ. (4.4)

Since rearrangements preserve the Lp norms, we have that the Rayleigh-Ritz quotient decreases under rearrangement,
i.e. 

D |∇u|2dµ
D u2dµ

≥


D⋆ |∇u⋆

|
2dµ

D⋆ (u⋆)2 dµ
, ∀u ∈ V 2(D, dµ).

The following Poincarè type inequality states the continuous embedding of V 2(D, dµ) in L2(D, dµ). It is a consequence of
some one-dimensional inequalities (see [32], Theorem 2, p. 40).

Corollary 4.1. Let D be an open subset of RN
+
. Then there exists a constant C, such that for every u ∈ V 2(D, dµ),

D
u2dµ ≤ C


D
|∇u|2 dµ.

4.2. Comparison result

Nowwe are in a position to obtain sharp estimates for the solution to problem (1.8). By aweak solution to such a problem
we mean a function u belonging to V 2(D, dµ) such that

D
A(x)∇u∇χdµ =


D
fχdµ, (4.5)

for every χ ∈ C1(D̄) such that χ = 0 on the set ∂D \ {xN = 0}.

Proof of Theorem 1.2. Note first that the existence of a unique solution to problems (1.8) and (1.11) is ensured by the
Lax–Milgram Theorem. Arguing as in [15] (see for instance [12], p. 363), we get

1 ≤


Iµ (mu(t))

−2
 mu(t)

0
f ∗(σ )dσ

 
−m′

u(t)


(4.6)

and

u∗ (s) ≤

 µ(D)

s


I−2
µ (l)

 l

0
f ∗(σ )dσ


dl. (4.7)
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Using (4.3) in (4.7) we obtain

u⋆ (x) ≤
1

Cµ2

 µ(D)

Cµψ(|x|)


exp


−2c


ψ−1


l
Cµ

2
ψ−1


l
Cµ

−2N−2k+2  l

0
f ∗(σ )dσ


dl

=
1
Cµ

 r⋆

|x|
exp


−cη2


η−N−k+1

 Cµψ(η)

0
f ∗(σ )dσ


dη


η := ψ−1


l
Cµ


=

 r⋆

|x|
exp


−cη2


η−N−k+1

 η

0
f ∗(Cµψ(ξ))ξN+k−1 exp


cξ 2


dξ

dη


σ := Cµψ(ξ)


=

 r⋆

|x|
exp


−cη2


η−N−k+1

 η

0
f ⋆(ξ)ξN+k−1 exp


cξ 2


dξ

dη

= w(x).

Now let us show (1.13). Arguing as in [12], p. 363–364 (see also [15]), we derive

−
d
dt


|u|>t

|∇u|q dµ ≤

 mu(t)

0
f ∗(s)ds

q/2 
−m′

u(t)
1−q/2

≤ (I(mu(t)))−q
 mu(t)

0
f ∗(s)ds

q 
−m′

u(t)

.

Integrating the last inequality between 0 and +∞, we get
D
|∇u|q dµ =


+∞

0


−

d
dt


|u|>t

|∇u|q dµ

dt

≤


+∞

0


Iµ(mu(t))

−q
 mu(t)

0
f ∗(σ )dσ

q 
−m′

u(t)

dt

≤

 µ(D)

0


Iµ(s)

−q
 s

0
f ∗(σ )dσ

q

ds.

Now a straightforward calculation yields
D
|∇u|q dµ ≤ Cµ

 µ(D)

0
exp


−qc


ψ−1


s
Cµ

2
ψ−1


s
Cµ

−q(N+k−1)  s

0
f ∗(σ )dσ

q

ds

= C2
µ

 R⋆

0
exp


−qcη2


η−q(N+k−1)

 Cµψ(η)

0
f ∗(σ )dσ

q

exp

cη2


ηN+k−1dη

= C2
µ

 R⋆

0
exp


(1 − q)cη2


η(1−q)(N+k−1)

 Cµψ(η)

0
f ∗(σ )dσ

q

dη

= C2
µ

 R⋆

0

 η

0
f ∗(Cµψ(ρ))Cµ exp


cρ2 ρN+k−1dρ

q

exp

(1 − q)cη2


η(1−q)(N+k−1)dη

= C2+q
µ

 R⋆

0

 η

0
f ⋆(ρ) exp


cρ2 ρN+k−1dρ

q

exp

(1 − q)cη2


η(1−q)(N+k−1)dη

=


D
|∇w|

q dµ. �
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