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Abstract

We minimize functionals

n
J(v1,...,v0) = /(1/;7)2 Vi [P = F(|x], v1, ..., vp)
RN i=1

in (Wlr@®Nyn, subject to integral constraints

/Gij(vi):cij (j:l,...,k,-,i:l,...,n).
RN

We prove, under fairly weakonditions on the functions, G;;, that smooth minimizers are radially
symmetric and do not change sign. We also show generalizations of this result to other variational
problems associated to degenerate elliptic systems. Our proofs are based on rearrangement arguments
and the strong maximum principle.
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1. Introduction

Consider the following variational problem:
[Vul?
J():= — F(v) )dx — Inf!,
p

RN
w.rt.ve WhP(RY), / G)dx =1, (1)
RN

where F and G are smooth functions satisfying suitable growth conditions. Problems of
this type give rise to semilinear elliptic problems

—~Apu=-V(Vul"?Vu) =h@) inRY, and lim u(x)=0 2)

|x|—00

(with » = F’ + aG’, for somex € R, in our case), and they have been extensively studied
in the literature (see, e.g., [3,11,12,15,19,20,27,29] and references cited therein).

If both F andG areevenfunctions, then there are no sign-changing minimizers of (1).
Moreover, ifu is a minimizer, then(—u) is a minimizer, too, and if: > 0, then for a.e.
t > 0, the level sefu > t} is a ball and|Vu| = consta.e. orffu = t}. The proof of this
well-known result is based on a rearrangement argument, which we recall below.

Let u a minimizer of (1). Since and G are evenju| is a minimizer, too. Let then
U denote the symmetrically decreasing rearrangement ¢&= Schwarz symmetrization;
for the definition see [14]). Notice théat is radially symmetric and radially nonincreasing.
ThenU € WEPRY), [Gw) = [G(lul)= [GU), [ Fw) = [ F(lul) = [ F(U), and
[1Vul? = [|V]ul|? = [ |VU|?, by the very properties of the rearrangement. Heliide
a minimizer, too. The above argument also shows that

/\V|u||”dx=/|VU|de.

RN RN

Due to a result of Brothers and Ziemer [8] it then follows that for a.0, the level set
{lu] > t} isaballandV|u|| = consta.e. ofiju| = ¢}. In particular, this implies that the set
{lu| > O} is either a ball, a halfspace or the wh@¢' . Henceu cannot change sign, and
the assertion follows. We emphasize that the above argument f#ilsifG are not even
functions.

There is a vast literature on symmetry results fi@nnegativesolutions of (2)—the
so-calledground states-including situations where the nonlinearitydepends omx|, and
also for some related cooperative elliptic ®as. In most cases, the proofs are either based
on the well-known moving plane method (seqy., [9,10,13,16,17,26]) or on a rearrange-
ment device called continuous Steiner symmetrization (see [4,5]). However, both methods
are not applicable if the solution of (hanges sign

O. Lopes has shown that in the Laplacian cagse; 2, minimizers of (1) are radially
symmetric provided thall, G € C2(R) (see [22]). His proof is based on a nice combination
of reflexion arguments with the principle of unique continuation. He also proved an anal-
ogous result for some related elliptic system (see Remark 4 below), and he showed other
symmetry results for variational problems in domains with radial symmetry (see [21]).
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We emphasize however that it was left as an open question in [22], whether the mini-
mizing solution (which is radially symmetric!) might change sign.

In this paper, we show that smooth minimizers of (1) are radially symmetricdand
not change signprovided that the nonlinearity in (2) satisfies suitable growth conditions
near its zero points (see Theorem 2). In particulap, & (1, 2], and if F, G € CL7~1(R),
then any smooth solution of problem (1) which satisfies (2) has this property (compare
Corollary 2(3) and Remark 2(2b)). We alsooghsimilar results for vector-valued prob-
lems with many integral constraints. Our symmetry proof (see Section 2) is divided in two
steps.

Using a reflexion device which is callédo-point rearrangementve first show that the
sets{u > t} fort > O (respectivelyju <t} for ¢ < 0), are balls, and thaV| is constant on
each level sefu =t} (+ € R) (see Theorem 1). Then an application of the strong maximum
principle leads to the full symmetry result (see Theorem 2 and Corollary 2).

Finally we give an example of a sign-changing minimizer for a variational problem
associated to thg-Laplacian, with two integral constraints (see Section 3).

2. Main results

We first introduce some notation. L&te N. For any points, y e RV, let (x, y) denote
Euclidean scalar product and| Euclidean norm, and Ik = [0, +00). If R > 0, x0 €
RV then letBg (xo) := {x: |x| < R}, andBg := Br(0). If t € R andu is a function defined
on RY, then we will use the abbreviatiofu > } for the superlevel sefx: u(x) > ¢},
and similarly for the sublevel sé¢t: < ¢t} and for the level setu =¢}. If N > 2, and if
p € (1, N),thenletp* = Np/(N — p).

Throughout the paper, lete N, k; e N, i =1,...,n, andq € [1, +o0) fixed num-
bers, and letM = M(s), F = F(s,11,...,t), Gij = G;;(t;), fixed functions defined
Y(s,t1,....t) €RE xR, j=1,...,k,i=1,...,n,and satisfying

MeCYRY), M(0)=0, M nonnegativeand strictly convex (3)
F differentiable w.r.tz1, ..., t,,

F, F;, measurable in and continuous im, . .., t,,

FCot1,.oity), FyCote, .o ty) € L°(RY) V(... 1) €R,

Gij € C!R), M'=m, F,=f, ng =:gij,

F(s,0,...,00 = fi(5,0,...,0) = G;;(0) = g;;(0) =0,

fi(s,t1,..., ty) nonincreasing in and nondecreasing
forke{l,...,n}, k#1,
V(s t1,....t)) €ERY xR, j=1,... ki, i=1...n. (4)
Setting

K={v=(vy,...,v) € (L"(IRN))": M(IVvil), F(I-1,v), Gij(vi) € LY®RMY),



F. Brock / J. Math. Anal. Appl. 296 (2004) 226—243 229

/G,’j(U,’)dXZC,‘j,j=1,...,ki,i=l,...,n}, (5)
RN

wherec;; eR, j=1,...,k,i=1,...,n, wethen consider the following variational prob-
lem:

P) Jw) = / (ZM(le,'D - F(|x|, v)) dx — Inf!, veKk. (6)
RN i=1
We callu aminimizer of(P) if u € K, and if J(v) > J(u) Vv € K.
Suppose that is a minimizer and

ui e L°RY), i=1,...,n, (7)
and assume moreover, that the following manifold condition holds:
If, for some constantgy, . .., S, the functionZ’;":1 Bjgij (1) vanishes
on some intervat < r < d, then it vanishes everywhere &) i =1, ..., n. (8)
Then standard arguments in the calculus of variations show (see, e.g., [30])ishat
distributional solution of the following system of elliptic PDE:

k.
Vu; d
—V(m(WuiI) |Vu2|> = fi(lxl,u) + ;aijgij(ui)
Ehi(|x|,u) inRN,izl,...,n, 9)

with o; € R, j=1,...,k, i =1,...,n, as Lagrange multipliers. Notice that =
hi(s,t1, ..., 1) ((s,11,...,ty) € Rg x R™), is nonincreasing in and nondecreasing in,
i,j=1...,n,j#i,ie., the system (9) isooperative
Henceforth we will only consider minimizers which satisfy
ui e CY®RY), i=1,...,n. (10)

Sinceu; € L4(RN) we then also have

u;i(x) >0 as|x| >o0,i=1,...,n. (12)

Remark 1. We will not specify conditions which ensure existence and regularity of mini-
mizers of (P). Notice however, that the assumptions (7) and (10) above are not too restric-
tive in many cases:

Consider, for instance, a problem for tpelLaplacian operator, that i#7 (s) = s”/p,
with1l < p < N, ¢ = p*, and suppose that the followingayrth conditions are fulfilled:

|fiCs.tn, )]s [gij ()] Sc(L+1el") ¥(s,t1.,.... 1) €ERS x R,
j=1... ki, i=1,...,n, forsomec>0andr e (1, p* —1).

’

Then any minimizer of (P) is bounded (see, e.g., [29]). In view of Eg. (9) this implies that
upe CL¥ 0 e(0,1),i=1,...,n; see[28].

Moreover, there is a wide class of smooth functidfisuch that any bounded solution
u; of (9)isCl,i=1,...,n; see [18].
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For the proofs of our symmetry results we need some preliminary settings. Given any
(N — 1)-hyperplaneX, let H one of the two open halfspaces into whigH is divided
by X, and letoy denote reflexion iny = 9 H. For anyw € Llloc(RN), we define itgwo-
point rearrangement w.r.td by

maXxw(x); w(ogx)} ifxeH,

)= { min{w(x); w(ogx)} if x e RV \ H.

For convenience, we will sometimes also weite= o7, and7T7 w = wy.

Notice that two-point rearrangements have been proved particularly useful in showing
integral inequalities related to Steiner and cap symmetrizations (see [2,7]). Below we sum-
marize some properties of this transformation.

Lemma 1 (see [7]).

(1) fy e CR), we LE RY), and ify(w) € LYRY), theny(wgy) € LYRY), and

loc

/l/f(wH)dX=/w(w)dx. (12)
RN RN

(2) If we LL @RY), and if [Vw| € LP(RY) for somep € [1, +o0], then also|Vwy| €
LP(RN). If, moreoverM (|Vw|) € LY(RYN), then

/M(IVw|)dx:/M(|VwH|)dx. (13)
RN RN

Notice that (12) and (13) follow from the fact that the two-point rearrangerfignt
rearranges the values ofand of [Vv| in the two corresponding points, oy x for a.e.
x € RV, We also mention that the restriction to nonnegative functions [7] is not
essential for the proofs.

We will also need an integral inequality related to two-point rearrangement that has been
proved in [6]. Here we add a careful analysis of the equality sign. For the convenience of
the reader, the full proof is included in Appendix A.

Lemma?2.Letv = (v1,...,v,) € (LI@RV)", let F(|-|,v) € LYRY), andlet0 € H. Then

/F(|x|,v1,...,vn)dx < / F(jx|, T vy, ..., T"v,) dx. (14)
RN RN
Furthermore, if, for some € {1, ..., n}, the function(d F/dt;)(r, 11, ..., t,,) is strictly de-
creasing inr and0 € H, then the equality irf14) is achieved only if; = 7" v;. Finally,
if, for some numbers j € {1,...,n},i # j, the function(d F/0t;)(r, 11, ..., t,) isS strictly
increasing in¢;, then the equality i1f14) is achieved only if

(vi (x) —v; (cer))(vj (x) —v; (cer)) >0 VxeH. (15)

Now we are in a position to prove the first symmetry result.
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Theorem 1. Letu = (u1, ..., u,) be a minimizer ofP) satisfying(9)—(11) Then for any
i €{1,...,n}the following hold

(1) |Vu;| is constant on the sét; =t} V¢ € (infu;, supu;), and, in particular|Vu;| =0
on the setfu; = 0}. Furthermore, ifsupu; > 0, then the superlevel sets; > ¢} are
balls vVt € (0, supu;), and ifinfu; < 0, then the sublevel seta; < ¢} are ballsV:
(infu;, 0).

(2) If the functionf; = f;(r, 11, ..., t,) is strictly decreasing i, theny; is radially sym-
metric and radially nonincreasing aboGt—and, in particular, nonnegative—that is,
there is a functiorv € C1((0, +00)) such that

ui(x)=v(lx]) and v'(r)<0 for0<|x|=r <+ooc. (16)

(3) If, forsomej € {1,...,n}, j #1i, the functionf; = f;(r, 11, ..., t,) is strictly increas-
ing in¢;, then the functions; andu ; are equally ordered, that is

(i (x) — u;i () (uj(x) —uj(»)) >0 Vx,yeRV. 17)

Proof. (1) First observe thatif is any halfspace with @ A then(T#uy, ..., T%u,) e K
andJ(THuy, ..., T"u,) < Jw), by Lemmal. Henc&l % uy, ..., T"u,) is aminimizer
of (P), too, and/ (T 7 uy, ..., T"u,) = J(u). In particular, this implies

/F(|x|,u)dx=/F(|x|,THu1,...,THun)dx

RN RN
vV halfspacesd with O e H. (18)

Now fixi € {1,...,n}. Assume sup; > 0, and let € (0, supu;). Settings; (¢) := {u; =t}
we chooser, y € S; (1), x # y, and a halfspac#l C RY such thaty = o x, and such that
0 € H. We claim that this implies

Vui(x) = Vou (ui (x)), (19)

that is, the gradients af; at the pointsx and y are oppositely directed w.r.t. reflexion
in 9H. Indeed, ifVu; (x) # Vog (ui(x)), thenVTH#y; is discontinuous across sorgé-
hypersurfaces, while THu; € C1(B:(x) \ S) (¢ > 0, small). But this is impossible, since
(THuyq,...,T"u,) is a minimizer, and hence it satisfies a system of the form (9)—with
the Lagrangian multipliers;; possibly replaced by some other numhzggsj =1,...,k;,
i=1,..., n.t

Repeating the above considerations for all poirgsS; (r) we find that
2(Vu;(x),z —x)

Vui(z) = Vu;(x) — X2

= (z—x) VzeSi{t), z#x. (20)
Thisin particular means th&%u; | = const=: c; (1) on S; (). Sinceu; € C1(RY), it follows
that|Vu;| = ¢;(¢) on the se{u; = t}, and sinces; decays at infinity, als¢Vu;| = 0 on the
set{u;(x) = 0}.

1 with some more effort we may actually prove that = alfj Jj=1..., ki,i=1,...,n,butthatinformation
is not needed here.
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Assume; (1) # 0. ThenS; (1) is locally aC-hypersurface and (20) shows that

v(z) =v(x) — %(Z —x) VzeSi), z#x,
wherev(z) denotes the exterior normal {a; > ¢} atz. By Lemma R (Appendix A) and
sinceu; decays at infinity this means that the superlevelgget- ¢} is a ball in this case.

Next lets € (0, supu;) andc;(t) = 0. Then we find a strictly decreasing sequefigg
with limy_, o ix =t and such that; (1x) # 0,k = 1,2, .... Since{u; > 1} = (Jgoq{ui > 1},
this means that the superlevel §et > ¢} is a ball in this case, too.

Similarly we can prove that any sublevel et < ¢} is a ball and|Vu;| = const on
{u; =t} ifinf u; <0 and ift € (infu;, 0).

(2) Next assume that, for somee {1, ..., n}, the function f; = fi(r,t1,...,t,) IS
strictly decreasing im. In view of (18), Lemma 2 tells us that = 7" u; for any half-
spaceH with O € H. Itis easy to see that this implies the symmetry property (16).

(3) Finally let, for some numbeis; € {1,...,n},i # j, the functionf; = f;(r, 11, ...,
t,) be strictly increasing in;, and assume that (17) is not satisfied. Then there exist two
density pointsx, y € RY of u; and uj such thatu; (x) > u; (y) andu;(x) < u;(y). We
choose a halfspadé with 0 € H such thaty = ox. Then, applying Lemma 2, we obtain
that [pn F(|x|,u)dx < [ F(Ix|, THuz, ..., T"u,)dx, a contradiction. The theorem is
proved. O

From part (1) of Theorem 1 one easily obtains that minimizers of (P) are ‘locally radially
symmetric’:

Corollary 1. Letu = (u1, ..., u,) be a minimizer of(P) satisfying(9)—-(11) and letA be

a connected component of the §et Vu; (x) £ 0},i € {1, ..., n}. Then there are numbers
R1, Rz € [0, +00] with R < R, and a point; € RV such thatA = {x: Ry < |x — z| <
R}, andu; is radially symmetric inA, that is, there is a function € C1((R1, R2)), such
thatu; (x) = v(Jx — z|), x € A. Moreoveru; does not change sign ia. Finally, if u; >0
(respectively; < 0)in A thenv'(r) < 0 (respectivelyw’(r) > 0), r € (R1, R2).

Proof. We use the notation of the previous proof. In view of part (1) of Theorem 1, we find
two numbersi, b € R, a < b, such thatA = {x: a < u;(x) < b}, and for each € (a, b)

the level set{u; =t} is a ball withc;(r) > 0. Moreover, since:(0) = 0, we have that
eithera > 0 orb < 0, that is,u; does not change sign ia. Finally, sincex; € CL(RV),

an easy application of the method of steepestcént (see [1]) shows that the level sets
{u; =1}, t € (a, b), are concentric spheres. The last assertion of the corollary then follows
immediately. O

Using the weak symmetry of minimizers of (P), we now intend to show their radial
symmetry (and their positivity as well!) provided that the functibps =1, ..., n, in (9)
satisfy some growth conditions near their zero points. Here the key role in the proof is
played by a general version of the strongxingum principle that has been shown recently
by Pucci, Serrin and Zou (see [24,25]).
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In the sequel, let
u(s) :=sm(s) —M(s) (s =0).

SinceM is strictly convexyu is continuous and strictly increasing, and it has a continuous
and strictly increasing inverse—1. We denote byA,, the set of functions € C(Rj)
satisfying

1
dt
a(0) =0, a(t)>0 fort>0, and /—:—i—oo
) pL(fyals)ds)

Strong maximum principle (SMP) (see [24,25])Let 2 be a domain iRY, let 352 be
smooth in a neighborhood af € 852, and letu € C1(£2 U {xo}) satisfyu(xg) =0 and in
the sense of distributions,

\Y

—v(m(|v14|)|v—zl) >—a(), u>0in 2,
wherea € A,,. Then

ou .

a—(xo) <0 (v: exterior normal,

Y

where the equality sign is attained onlyit= 0 in £2.
Definition 1. Leth € C(RY x R"), h =h(s, 11, ..., t,), andi € {1,...,n}.
(1) We say that has propertyH, (i, t), respectivelyH_(i, 7), if there holds: Ifi (o, 11,

..., T,) =0 for some(o, 11, ..., 1)) € R{; x R" with 7; = 7, then there exists a func-
tiona € A,, such that

h(s,t1,....t) > —a(ti — 1) Y(s,t1,....t,) € Rf x R”

with ¢; € [t, +00), respectively (21)
h(s,t1,....ty) <ot — ;) V(s,t1,....t) eRY x R"
with #; € (—oo, T]. (22)

(2) We say that: has propertyH (i, t), if there holds: Ifi(o, 11, ..., 7,) = 0 for some
(0,71,...,Tn) € R{; x R" with 7; = 7, then there exists a functiane A,, such that
h satisfies either one of the conditions (21) or (22) of (1).

(3) We say that is nice w.r.t. the variable, if # has propertyH (i, ) for anyt € R.

Theorem 2. Letu = (us, ..., u,) be a minimizer of P) satisfying(9)—(11) Then for every
i €{1,...,n}the following hold

(1) If the functionk; in (9) has propertyH (i, t) for any t € R\ {0} thenu; is radially
symmetric in the sets; > 0} and{u; < 0}. More precisely, iSupu; > 0, then
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3z €RY, Riy, Roy €[0, 400, Ry < Roy, v4 € CH((Riq, R24)),
such thatf{u; > 0} = {x: x —z4] < R2+}, ui(x)= v(lx — Z+|),

and vﬁr(r) <0 for Riy <|x —z4|=r < Roy, (23)

and ifinfu; <0, then

3z_ eRY, Ri_, Ro_ €0, +00], R < Ro—, v_ € C1((R1—, R2_)),
such thatf{u; <0} = {x: x —z_| < Rz_}, u;(x) = v_(lx — z_|),
and v . (r)>0 for Ri_ <|x —z_|=r < Ro_. (24)

(2) If the functionk; in (9) has propertyH (i, 0), thenu; does not change sign.

(3) If the functionh; in (9) is nice w.r.t. the variable;, thenu; is radially symmetric and
does not change sign. More preciselysufu; > 0, thenu; is nonnegative and satisfies
condition(23), and ifinfu; < 0, theny; is nonpositive and satisfies conditi(i24).

Proof. (1) Let h; have propertyH (i, t) for any T € R \ {0}. Assume that sug, > O,
and lett € (0, supu;) with c(z) > 0. We define := inf{s < ¢: ¢(r) > 0Vt € (s, ]}, and
t1 :=sups >t ¢(r) > 0Vt € [1,s)}. By Theorem 1(1), we have that > 0, and by
Corollary 1, we find a pointy € RV, numbersRy,, Ro; € [0, +o0], R14+ < Rz, and
a functionvy € C1((R14, R24)) such thatA := {r, < u; < 11} = {x: Riy < |x — 24| <
R2y}, andu; (x) = vy (Jx — z4]), andv/, (r) < 0 for Riy < |x —z| =7 < Rz4. Notice
that in view of the equation fa;, ; = h; (Jx|, u(x)) can be written inA as a function of
|x — z4], toO.

Now assume thab > 0. ThenRz, < +o0, and sincey, (R2+) = 0, the SMP tells us
that we must havé; (|x|, u(x)) = const=: k <0 0nd Bg,, (z+). Assume thak < 0. Since
h; is continuous, we find some> 0 such thab; (x|, u(x)) < 01in Bgr,, +¢(z+)\ Bry, (24).
Sinceu;(x) < 12N Br,, +¢(z4) \ Br,, (z4), the SMP gives/, (R24) < 0, a contradiction.
Thus we havé = 0, and sincé:; has propertyH (i, r2), the SMP tells us again that we must
havev’, (R24) < 0, a contradiction! Henck; (x|, u(x)) = 0 ond Bg,, (z+) andr, = 0.

Next assume that < supu;. ThenR1, > 0, {u; > 11} = Bg,, (z+) andv/, (R11) =0.
Using the SMP analogously as above, we find th@lx|, u(x)) = 0 ondBg,, (z+). Then
the fact that:; has the propertyi (i, 1), and that’, (R14) = 0, leads again to a contradic-
tion. It follows thatr; = supu;. This proves (23). If infi; < 0 then one shows analogously
as above that (24) holds.

(2) Let h; have propertyH (i, 0), and assume that both sé¢ts > 0} and{u; < 0} are
nonempty. It then follows from Theorem 1 that each of these sets is a ball or a halfspace.
The SMP then tells us that; (|x|, u(x)) = 0 andu; (x) =0 on d{u; > 0} U 9{u; < O}.
Assume that; satisfies condition (21). But then the SMP giy&s;| # 0 ond{u; > 0},

a contradiction. Similarly one obtains a contradictioh;ifsatisfies condition (22).

(3) This property follows directly from parts (1) and (2)O

We can exclude the possibility of ‘plateaus’ at height 0, supnd infu;, by slightly
sharpening the growth conditions for the functigrin (9) at these levels.
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Corollary 2. Letu = (u1, ..., u,) be a minimizer of(P) satisfying(9)—-(11) and leti
{1,...,n}. Then the following hold

() If supu; > O (respectivelyinfu; < 0), and if the functionk; in (9) has property
H_(i,supu;) (respectivelyH, (i, infu;)), then the sef{x: u;(x) = supu;} (respec-
tively {x: u;(x) = infu;}) is a single point.

(2) If the functiona; in (9) has both properties_ (i, 0) and H4 (i, 0), then eithern; (x)
>0, u;(x) <0oru;j(x)=00nR".

(3) In particular, if #; has both propertied?_(i, t) and Hy (i, t) for anyt € R, and if
u; is positive(respectively negatiyethen there exists a poiate RV and a function
v e CY®RY) such thatu; (x) = v(]x — z), andv'(r) < O (respectively’(r) > 0), for
O<|x—z]=r <+o0.

Proof. (1) Let sups; > 0, and assume that has propertyH_ (i, supu;). By Theorem 1,
we find a pointxg € RY, and R > 0 such that{x: u;(x) = supu;} = Bgr(xo). Assume
R > 0. Then the maximum principle shows thats, t1, . . ., t,) = 0 whenever; = supu; .
Henceh; satisfies condition (22). Applying the SMP to the $et u;(x) < supu;} =
RN \ Bg(xo) we then find thatVu;| # 0 ond Bg(xo), a contradiction. Hencg = 0.
Analogously one shows that if inf < O, then the sefx: u;(x) = infu;} is a single
point.
(2) Assume thati; satisfies both propertied_ (i, 0) and H.(i, 0). Thenu; does not
change sign by Theorem 2(2). Assume thatisup 0 and thafu; = 0} # @. Then{u; > 0}
is either a ball or a halfspace, which means théfk|, u;(x)) = 0 on {u; = 0}. Hence
h; satisfies condition (21) with = 0. Applying the SMP then shows that we must have
|Vu; (x)| # 0 ond{u; > 0}, which is impossible. Henag (x) > 0 onR" .
Analogously one shows that if inf < 0 thenu; (x) <0 onR".
The assertion (3) then follows from Theorem 2(3), and from the assertions (1) and (2)
above. O

Remark 2. Let us illustrate the coritions on the nonlinearitiels; required in Theorem 1(2)
and Corollary 2.
(1) The functionf; is strictly decreasing in if it is, for instance, of the form

mi

[t ) =) ai(Pbi(t, - 1),

k=1

with continuous and positive functiokg,, and with strictly decreasing functioag,, k =
1,...,m;.

Furthermore, one obtains radial symmetry of minimizeod (P) by combining several
of the conditions given in Theorem 1. For instance, if the functior= f1(r, 11, ..., t)
is strictly decreasing im, and if the functionsf; = f;(r, 11, ..., t,) are strictly increasing
int, j=1...,n,i=2,...,n, j #1i, then any component; has property (16); =
1,...,n.

(2) The functionk; has both propertie&_(i, ) andH, (i, t) Yt € R, T #£ 0, if there
exist two numbers; < 0, b; > 0 such that; (s, 11, ..., 1) = 0V(s, 11, ..., 1,) € R} x R”
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with ; € [a;, 01U [b;, +00) andh;(s,f1, ..., ta) <O V(s t1, ..., 1) € R x R" with #; €
(—o00,a;]1U[0, b;]. Notice that the above inequalities are difficult to check in general, since
they also depend on the Lagrangian multipliers in (9). Furthernigiieas both properties
H_(i,0)andH,.(i, 0) if f; hasthese properties, and if there exists a functien4,, such

that

lgijO| <a(lt]) VieR, j=1,... k.

Finally, for certain differential operators, the required growth conditiong:fdn Corol-
lary 2(3) are fulfilled if the functiongf; andg;;, j =1,...,k;,i =1,...,n, in (9) have
additional smoothness properties:

(a) Assume that the differentiaperator is nondegenerate, thatis < m(s) < czs Vs €
Rg, for some numbers @ ¢1 < ¢2 < +o00. Then we may put(s) =cs (¢ > 0) in (21) and
(22). Henceh; has both propertie&_(i, ) andHy (i, t) VT e R if f; = fi(r,t1,..., 1)
andg;; = gi; (t;) satisfy a Lipschitz condition w.r.t;, j = 1,..., k;, uniformly w.r.t. the
other variablesj = 1, ..., n. Examples for such operators ab#(s) = s2/2 (Laplacian
operator), and/ (s) = +/1 + s2 — 1 (minimal surface operator).

(b) Next assume tha/ (s) = s” /p (p-Laplace operator), and thate (1, 2]. Choosing
a(s) = csP~1 (¢ > 0) in (21) and (22), we see that has both propertie&_ (i, ) and
H, (i,7) Yt e R, provided thatf; = fi(s,t1,.... 1), gij = &ij(t:), j =1,..., k;, satisfy
a Holder condition with exponerip — 1) w.r.t. ¢;, uniformly V(s, 71, ...,1,) € Rar x R,
i=1...,n.

(3) In the scalar case, that isif= 1, we need not to restrict ourselves to bounded
solutions. In fact, our results hold true—with obvious changes in the formulation and in
the proofs—if condition (10) is replaced by

ueCHU), whereU :={x: |u(x)| < oo}, andU is open. (25)

In particular, ifu is a minimizer of (P), and if the singular sgt = +o0} (respectively
{u = —o0}) is nonempty, then it must be a single point.

Remark 3. Other constraintsOur results can be extended to situations where the ad-
missible setK contains further or other constraints that areariant under two-point
rearrangementHere are some examples:

(1) Inequality constraintsAssume thaK includes constraints of the form < v; < b,
with a; <0< b;, i =1,...,n, and assume that minimizersare smooth. Thel; :=
{x: a; <u; <b;}is an open set, and satisfies Eq. (9) ol/;,i =1, ..., n. Our symmetry
results then follow analogously as above.

(2) Volume constraintd_et K include constraints of the form > 0 and|{v; > 0}| = A;,
wherel; > 0, and| - | denotes Lebesgue measure, and assume tisad minimizer satis-
fying u; >0, u; € C*({u; > 0}) N COL(RN), where{u; > 0} is an open set,=1,...,n.
Thenu; satisfies Eq. (9) ifu; > 0}, and our symmetry results remain valid in the set
{u; > 0}. This implies that{u; > 0} is some ball with measurk;, andu; satisfies the
Bernoulli-type boundary condition

ou; . .
% =pu; ond{u; > 0} (v: interior normay, (26)
V

whereu; >0,i=1,...,n.
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(3) Artificial constraints Our method is also applicable when the integral constraints
involve derivatives of the admissible functions. Below we restrict ourselves to an example
in the scalar case, = 1.

Letd € (0,1),c,d >0, f € CL(R), £(0) =0, and assume that lim SPR, o0 |.f ()] > 0,

t
0< @ <0f'(t) and 27)
|fO] <c(l+1t]") VteR, withr e (1,2* — 1) whenN >3,

andr > 1 and arbitrary, whew < 2. (28)
SettingF (1) := [y F(s)ds, t € R, and

Ky = {u e WH2(RN): v £0, /(|vu|2 +dv]? — vf (v))dx = o},
RN
we consider the following problem:

2 2
Pa) Ja(v) :=/<w — F(v)) dx — Inf!, veKyu.

RN
The existence of minimizers ¢P4) was proved in [20, Theorem Ill.1]. Latone of them.
In view of (27), it is easy to check thatAu + du = f(u) in RY. Then assumption (28)
ensures that € C1(R") and thaw: decays at infinity. Furthermore, we have thate K 4
for any halfspacéd, by Lemma 1. Finally, the functioh defined by

h(t):= f(t) —dt, teR,

has both propertied_ (1, ) and H,. (1, t) for anyt € R (corresponding td/ (s) = s2/2).
Proceeding exactly as ate we then deduce thathas the symmetry property of Corol-
lary 2(3).

Remark 4. Itis interesting to compare our results with the work of Orlando Lopes. In [22],
he investigated the variational problem

n

12
J(v) :=/(Z|Vg’| —F(vl,...,vn))dx—>lnf!,

gy \i=l

subject to

v=(v1,...,v) € (WH2@®RM))"  and /G(vl, ) dx =1,
RN
where the functiong” and G satisfy appropriate smoothness and growth conditions. Us-
ing reflexion arguments and the principle of unique continuation, he showed that any
minimizer is radially symmetric. We emphasithat no cooperativity condition on the in-

tegrandsF andG are required here! Therefore it i@t possible to recover this result by
using our two-point rearrangement technigue tle other hand, the proofin [22] uses trial
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functions which are not rearrangements of the solution. Therefore it seems difficult to gen-
eralize the result to problems with more than one integral constraint. We also mention that
the result of [22] does not imply that the solutions are monotone in the radial variable—in
particular, they might change sign.

3. A sign-changing minimizer

In [26], Serrin and Zou gave an example of a nonnegative w&agolution of (2) with
compact support and with a plateau at some positive level, which has the local symmetry
property described in Corollary 1. In view of this example, it is natural to ask whether
such a symmetry breaking can also happemiinimizers of problem (P). Below we will
obtain an example of a sign-changing minimizer of (P) in the scalaricasé, which is
essentially based on the construction in [26]:

Example. Let 1< p < N, a € (0, min{(1/2); (p — 1)/p}), andk := p — 1 — ap. Notice
thatk > 0. Then define

B = xYeye i x| < 1,
w(x)=”('x')'={o if x| > 1.

Since(1/a) > 2, we have thatv € C2%R") (« > 0), andv’(r) < 0 for r € (0, 1). Fur-
thermorew satisfies weakly-A ,w = g(w) in RV, whereg is given by
gty =—(k+a)a [t (1 —1)][1— (@ + D1
+ (N —1a® P -] a-n" >0

Notice thatg € C*°((0, 1)), g(0) = g(1) =0, andg’(¢) < 0 for smallz > 0. Furthermore,
we have thag € C¥([0, 1]) and lim_.0g’(t) = —oo if p € (1, 2], andg € C1*([0, 1]) for
somex > 0, if p > 2, and ifa is small enough. We extendontoR by settingg(z) = 0 for
t € R\ [0, 1]. SettingG (1) := [y g(s)ds, t € R, we find thatG(1) > 0, and

1
dt

/7|G(t)|1/1’ < 00. (29)

0

Using a well-known integral ientity which is due to Pohozaev, Pucci and Serrin (see [23]),
we have that

1
/G(w)dx:—*/lepdx =:cp> 0.
RN P RV

Setting

Ko= :veLP*(RN): Ve (L?®RY)Y, /G(v)dx:co}
RN
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and

K= :veKoZ /G(—v)dx=co},

RN
we then consider the following two variational problems:
(Po) /|Vv|pdx—>lnf!, ve Ky, k=0, 1.
RN
Problem(Py) has a nonnegative radially symmetric and radially nonincreasing minimizer
ug € CYRN), —A,uo = g(uo) in R, andug(x) — 0 as|x| — oo (see [11, Theorem 1]).

By the maximum principle, this implies € up < 1. Moreover, since; satisfies (29),
uo must have compact support (see [25, Theorem 2]). Sefting:= [y~ |Vv|” dx, and

u1(x) :=ug(x) —ug(x —xg), x¢€ RN,

wherexg € RV, |xg| > 2 diamsuppw), we have thaii; € K1, andJ (u1) = 2J (ug). On the
other hand, setting.; := maxQ0; v}, v— := max0, —v} for v € K1, we have thabv_, v,
€ Ko, and

J()=J (o) + J(vy) = 2inf{J (h): h € Ko} =2J(up) Vv € K1.
Henceus is a minimizer of problentP:). Notice that

—Apur=g(u1) — g(—u) =h(u) iNRY,
and in accordanceitih Theorem 2(2)k does not have proper# (1, 0).

We conclude our work with some
Open problems.

(1) Is there an alternative proof of Theorem 1 which does not rely on the smoothness of
the minimizer?

(2) Letn = 1. Given any number 0, can one construct a minimizere C1(R") of
problem (P) with symmetry breaking at levek ?

(3) Prove (or disprove) th&wcal minimizers of problem (P) satisfy the symmetry property
(1) of Theorem 1.

Appendix A. Technical results
Proof of Lemma 2. We first show the following technical

LemmaA.l Letry >r_ >0,a;, b, ¢, c; e Rwithc;t = maxa;; b}, c; = min{a;; b;},
i=1,...,n. Then

F(r—aala"'aal‘l)+F(r+abla"'abﬂ)
<F(r_,cf,...,c;:')+F(r+,c'I,...,c;). (A1)
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Furthermore, if, for some € {1, ..., n}, the function(d F/3t;)(r, 11, ..., t,,) is strictly de-
creasing inr and ifr;. > r_, then the equality itfA.1) is achieved only if;; = c:r Finally,
if for some numbers j € {1,...,n}, i # j, the function(d0 F/dt;)(r, t1, ..., t,) iS strictly
increasing in¢;, then equality ir(A.1) is achieved only if there holds

(ai —bi)aj —bj) > 0. (A.2)

Proof. By regrouping the variables, ..., t,, if necessary, we may assume w.l.0.g. that
there is somek € {1,...,n} such thata; = ¢; for 1 <i <k, and ifk < n, then also

a; = cjr for i > k. Introducing the vectors’ = (c7,....¢;), v = (Cppgs s Cn ) W =
(h1,....h), " = (his1, ... hy), Whereh; :=c —c;,i=1,...,n, (A.1) reads as

I'=Fr_ vV +h VvV +h")+F@y,v,v)
—Fr_ vV V' +h")y—F@y,v+h,v)>0.

We have

1
k
I :/ hi(Fy(r—, v +th' W' +1") — Fy (ry, v + 10’ ,v")) dt.
o =1

1

Now each summand in the integrand is nonnegative in view of the assumptiofAs on
proving the first assertion. Moreover, we hdve 0 only if #; =0 or

Fo(r—, v +th' V' +h") = F,(ry, v +th' V") Vte(0,1),

foranyi € {1,...,k}. From this the assertions in the equality case of (A.1) follow eas-
ily. O

We now continue with the proof of Lemma 2. We have by Lemma A.1, and $inee
lox|Vx € H,

F(x], v1(x), ..., va(x)) + F(lox|, v1(0x), ..., va(ox))
< F(Ixl, T o100, ..., TH v, (1)) + F (lox], T"vi(ox), ..., TH v, (0x))
Vx € H. (A.3)

Integrating this inequality ovel, the first assertion of Lemma 2 follows. Furthermore, if,
for somei € {1, ..., n}, the function(d F/0t;)(r, 11, ..., ty) iS strictly decreasing im, and
if 0 € H, then we have that| < |ox| Vx € H, and hence equality in (A.3) is achieved
only if v; (x) = THv; (x), by Lemma A.1.

Finally, if for some numbers, j € {1,...,n}, the function(0F/0t;)(r, t1,...,t,) iS
strictly increasing inrj, then Lemma A.1 tells us that equality in (A.3) is achieved only if
(15) holds. O

LemmaR (Reflexion lemma)LetU be a nonempty open setiR¥ with C1-boundarys,
and assume that

v(y) =v(z) — %(y—z) Vy,z e Swithy # z, (A.49)
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wherev(x) denotes the exterior normal 1@ at x. ThenU is either a halfspace, a ball or
the exterior of a ball ifR" .

Proof. Assume thaU is not a halfspace. Then there exist two pointsy» € S such that
v(y1) # v(y2). Letting

ly2 — y1/?
0=n+5—"—————"v0,
206D, =y
we may assume w.l.o.g. thag = 0. It is then easy to see thati| = |y2| = r for some
r > 0, and either (iy(y;) = yi/r (i =1,2),0r (i) v(y;) = —yi/r (i =1, 2).
We claim that (i) implies thal/ is a ball. Clearly it is enough to show that
x|=r Vxes, x#=+y (i=12). (A.5)
Settinga; := (r|x)~1(x, i), we havela;| < 1, and using (A.4) we find,
2r2 — 2a;|x|r
r2 — 2a;|x|r + |x|
Multiplying (A.6) with x /(r|x|), we have

rv(x) = y; — s(i—x) (=12). (A.6)

W), x)  —air’®—a|x[*+2r|x|

x| 2 2alr t a2 02 (A7)
Introducing the function

—tr? —t|x|2 + 2r|x|

t):= , te(—11),

F@ r2 —2t|x|r + |x|? € )
we find that

2 112
f'@)= (" = ) <0 Vte(=1,+1).

(r2 = 2t|x|r + |x|?)?
By (A.7), this means that we must hawe= as. Going back to (A.6) we finally calculate

2r2 — 2a1q|x|r

y2—y1= Iz(yz—yl),

r2 — 2a1|x|r + |x

which implies that = |x|. This shows (A.5), and the claim is proved.
Similarly one shows in case (i) that is the exterior of a ball iRY. 0O

Acknowledgments

| thank P. Felmer (Santiago) for some useful converpsati| am also grateful to the (anonymous) referee for
her/his valuable suggestions.
References

[1] G. Aronsson, G. Talenti, Estimating the integral of a function in terms of a distribution function of its
gradient, Boll. Un. Mat. Ital. B (5) 18 (1981) 885-894.



242 F. Brock / J. Math. Anal. Appl. 296 (2004) 226—243

[2] A. Baernstein I, A unified approach to symmetrization, in: A. Alvino, et al. (Eds.), PDE of Elliptic Type,
in: Symposia Matematica, vol. 35, Cambridge Univ. Press, 1995.
[3] H. Berestycki, P.-L. Lions, Nonlinear scalarlfieequations, Arch. Rashal Mech. Anal. 82 (1983) 313-376.
[4] F. Brock, Radial symmetry for nonnegative stidms of semilinear elliptic equations involving the
Laplacian, in: Progress in PDE, vol. 1, Pont-@l4son, 1997; in: Pitman Res. Notes Math., vol. 383,
Longman, Harlow, 1998, pp. 46-57.
[5] F. Brock, Continuous rearrangement and symmetnyobftons of elliptic problems, Proc. Indian Acad. Sci.
(Math. Sci.) 110 (2000) 157-204.
[6] F. Brock, A general rearrangement inequaktya Hardy—Littlewood, J. Inequal. Appl. 5 (2000) 309-320.
[7] F. Brock, A.Yu. Solynin, An approach to symmetation via polarization, Trans. Amer. Math. Soc. 352
(1999) 1759-1796.
[8] J. Brothers, W.P. Ziemer, Minimal rearrangenteaf Sobolev functions, J. Reine Angew. Math. 384 (1988)
153-179.
[9] J. Busca, B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space, J. Differential
Equations 163 (2000) 41-56.
[10] L. Damascelli, F. Pacella, M. Ramaswamy, Symmetry of ground statgs bfplace equations via the
moving plane method, Arch. Ranal Mech. Anal. 148 (1999) 291-308.
[11] A. Ferrero, F. Gazzola, On subcritically assumptifarghe existence of ground states of quasilinear elliptic
equations, Adv. Differetial Equations 8 (2003) 1081-1106.
[12] F. Gazzola, J. Serrin, M. Tang, Existence of groatates and free boundary problems for quasilinear elliptic
operators, Adv. Differatial Equations 5 (2000) 1-30.
[13] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equatiofi®' jrin:
L. Nachbin (Ed.), Mathematic Analysis and Appliaatis, Part A, in: Advances in Mathematics, Supplemen-
tary Studies, vol. 7A, Academic Press, New York, 1981, pp. 369-402.
[14] B. Kawohl, Rearrangements and Convexity of LeSets in PDE, in: Springer Lecture Notes, vol. 1150,
1985.
[15] I. Kuzin, S. Pohozaev, Entire Solutions of Semilinear Elliptic Equations, in: Progress in Nonlinear Differen-
tial Equations and Their Applicationsol. 33, Birkhauser, Basel, 1997.
[16] Y. Li, W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic
equations ifR”". |. Asymptotic Behavior, Arch. Rational Mech. Anal. 118 (1992) 195-222;
Y. Li, W.-M. Ni, Il. Radial symmetry Arch. Rational Mech. Anal. 118 (1992) 223-243.
[17] Y. Li, W.-M. Ni, Radial symmetry of positive solutions of nonlinear elliptic equation®&f) Comm. Partial
Differential Equations 18 (1993) 1043-1054.
[18] G.M. Lieberman, The natural generalization of tieural conditions of Ladyzhenskaya and Ural'tseva for
elliptic equations, Comm. Partialifferential Equations 16 (1991) 311-361.
[19] P.-L. Lions, The concentration—compactness @pile in the calculus of variations. The locally compact
case. Part 1, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (2) (1984) 109-145;
P.-L. Lions, Part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (4) (1984) 223-283.
[20] P.L. Lions, The concentration-compactness pplecin the calculus of variations. The limit case. Part 1,
Rev. Mat. Iberoamericana 1 (1) (1985) 145-201;
P.L. Lions, Part 2, Rev. Mat. Iberoamericana 1 (2) (1985) 45-121.
[21] O. Lopes, Radial and nonradial minimizers for sondially symmetric functionals, Electron. J. Differential
Equations 3 (1996) 1-14.
[22] O. Lopes, Radial symmetry of minimizers for some translation and rotation invariant functionals, J. Differ-
ential Equations 124 (1996) 378-388.
[23] P. Pucci, J. Serrin, A general variatial identity, Indiana Univ. Math. J. 35 (1986) 681—703.
[24] P. Pucci, J. Serrin, A note on the strong maximunmgigle for singular elliptic inequalities, J. Math. Pures
Appl. 79 (2000) 57-71.
[25] P. Pucci, J. Serrin, H. Zou, A strong maximum pipie and a compact support principle for singular elliptic
inequalities, J. Math. Pures Appl. 78 (1999) 769-789.
[26] J. Serrin, H. Zou, Symmetry of ground states qpfasilinear elliptic equations, Arch. Rational Mech.
Anal. 148 (1999) 265-290.
[27] M. Struwe, Variational Methodshird ed., in: Ergebnisse der Mathetikaund ihrer Grenzgebiete, vol. 34,
Springer-Verlag, Berlin, 2000.



F. Brock / J. Math. Anal. Appl. 296 (2004) 226—243 243

[28] P. Tolksdorf, Regularity for a more general classjoésilinear elliptic equations, J. Differential Equations 51
(1984) 126-150.

[29] L. Veron, Singularities of Solutions of Second Ordguasilinear Equations, in: Pitman Research Notes,
vol. 353, Longman, 1996.

[30] E. Zeidler, Variational Methods and Optimizatian; Nonlinear Functional Analysis and Its Applications,
vol. lll, Springer-Verlag, New York, 1985.



