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A Multiplicity Result for the p−Laplacian
Involving a Parameter

Friedemann Brock∗, Leonelo Iturriaga† and Pedro Ubilla‡

Abstract. We study existence and multiplicity of positive solutions for the
following problem (

−∆p u = λf(x, u) in Ω

u = 0 on ∂Ω
,

where λ is a positive parameter, Ω is a bounded and smooth domain in RN , p ∈
(1, N), f(x, t) behaves, for instance, like o(|t|p−1) near 0 and +∞, and satisfies
some further properties. In particular, our assumptions allow us to consider
both positive and sign changing nonlinearitites f , the latter describing logistic
as well as reaction–diffusion processes.

By using sub– and supersolutions and variational arguments, we prove
that there exists a positive constant λ such that the above problem has at least
two positive solutions for λ > λ, at least one positive solution for λ = λ and
no solution for λ < λ. An important rôle plays the fact that local minimizers
of certain functionals in the C1–topology are also minimizers in W 1,p

0 (Ω). We
give a short new proof of this known result.

1. Introduction and statement of the results

During the last two decades the p−Laplacian operator, ∆p, has received growing
attention. This is due to the fact that it arises in various applications. For instance,
in Fluid Mechanics, the shear stress ~τ and the velocity ∇u of certain fluids are
related via an equation of the form ~τ(x) = a(x)∇pu(x), where ∇pu = |∇u|p−2∇u.
Here p > 1 is an arbitrary real number. The case p = 2 corresponds to a Newtonian
fluid, and models of Non–Newtonian fluids are given by p 6= 2. The equations of
motion then involve div(a∇pu), which reduces to a∆pu = adiv∇pu, provided that
a is a constant. Notice that the p−Laplacian also appears in the study of torsional
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creep (elastic case for p = 2, plastic case as p → ∞, see [16]), of flow through
porous media (p = 3

2 , see [29]), or of glacial sliding (p ∈ (1, 4
3 ], see [26]).

In this work, we will focus on the study the multiplicity of weak solutions of
the problem

(P )λ

{
−∆p u = λf(x, u), u ≥ 0 in Ω
u = 0 on ∂Ω,

where Ω is a bounded domain in RN with C2,β–boundary (β ∈ (0, 1)), and
p ∈ (1, N). Observe that if the nonlinearity f(x, t) behaves like o(|t|p−1) near
zero and infinity, then via variational techniques it is not difficult to prove the ex-
istence of two positive solutions for λ large enough. Furthermore, under the same
assumptions, a simple calculus involving the first eigenvalue of the p−Laplacian
allows us to prove non–existence for λ small enough.

Our goal is to specify the range of multiplicity for every λ ∈ (0,∞). More
precisely, we establish the existence of a positive constant λ such that the prob-
lem has at least two positive solutions for λ > λ, at least one positive solution for
λ = λ and no positive solution for λ < λ. The proofs are based on variational argu-
ments and the sub– and supersolutions technique. An important rôle plays the fact
that local minimizers of certain functionals in the C1–topology are also minimiz-
ers in W 1,p

0 (Ω). In the appendix we will give a short new proof of this known result.

Our assumptions on the nonlinearity f will be the following:
(H1) f : Ω × [0,+∞) −→ R is a measurable function and f(x, ·) is continuous,

uniformly for a.e. x ∈ Ω, and

|f(x, t)| ≤ C(1 + tr) ∀(x, t) ∈ Ω× [0,+∞), (1.1)

for some numbers C > 0 and r ∈ [0, p∗ − 1), where p∗ = Np/(N − p).
(H2) There exists a continuous nondecreasing function g : [0,+∞) → [0,+∞)

satisfying g(0) = 0, and such that the mapping t 7−→ f(x, t) + g(t) is nonde-
creasing.

(H3) lim t→0+f(x, t)t1−p = 0, uniformly for every x ∈ Ω.
(H4) lim supt→+∞ f(x, t)t1−p ≤ 0, uniformly for every x ∈ Ω.
(H5) There holds either

(i) f(x, t) > 0 for every (x, t) ∈ Ω× (0,+∞); or
(ii) there exists δ1 > 0 and a ball Bε0(x0) ⊂ Ω, (ε0 > 0, x0 ∈ Ω), such
that F (x, t) > 0 on Bε0(x0)× (0, δ1], where F (x, t) :=

∫ t
0
f(x, s) ds, and there

exists q > p− 1 such that the mapping t 7−→ t−qf(x, t) is strictly decreasing
on (0,+∞) for a.e. x ∈ Ω.
Let us comment on the hypotheses above.

A model for assumption (H1) is, for instance, f(x, u) = a(x)g(u), where a ∈ L∞(Ω)
and g ∈ C(R,R) is subcritical. (H1) and (H2) are standard in order to apply the
sub- and super–solutions method (see [3], and Lemma 2.1 below).
The assumptions (H3) and (H4) ensure that there is a number λ̄ > 0 such that
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Problem (P )λ has a positive solution for λ ≥ λ̄, and has no solution for 0 < λ < λ̄.
Notice that (H3) is a natural condition to obtain two positive solutions, since there
are well known uniqueness results in cases that the limit in (H3) is positive, see
for instance [9], [15], [21]. For the existence of branches of positive solutions for
asymptotically equi–diffusive problems, see Ambrosetti, Garćıa and Peral [2]. In
particular, [2] deals with the equation −∆pu = λf(u) , u ∈W 1,p

0 (Ω) where f sat-
isfies, for instance, limt→+∞ f(x, t)t1−p = c > 0. We emphasize that this case is
not considered here (compare with Hypothesis (H4)).
Finally, we use assumption (H5) in obtaining appropriate subsolutions of our prob-
lem (P )λ (see the proofs of the Lemmata 3.2 and 3.4 below). (H5) also ensures
the existence of a solution if λ is large enough (see the proof of Lemma 3.3).

Additionally, we suppose the following condition on the nonlinearity f which
allows us to obtain a second solution of our Problem (P )λ for λ ≥ λ̄.

(H6) There exist numbers c0 ≥ 0, δ0 > 0 such that the mapping t 7−→ f(x, t) +
c0t

p−1 is nondecreasing for (x, t) ∈ Ω× (0, δ0].
Our main result is the following

Theorem 1.1. Assume that f satisfies the conditions (H1)–(H6). Then there exists
a positive constant λ such that Problem (P )λ has at least two positive solutions for
λ > λ, at least one positive solution for λ = λ and no positive solution for λ < λ.

Let us first give a few applications of our main result.
Let p−1 < q, r > 0, and a1, a2 ∈ L∞(Ω), with a1 nonnegative and ess infΩ a2 > 0.
Then the conclusions of Theorem 1.1 hold in any one of the following cases:

1. f1(x, t) = a1(x)tq(1− a2(x)tr).
Notice in this case, in order to apply Theorem 1.1, one first needs to

show the equivalence with an appropriate truncated problem, (see Section
4).

2. f2(x, t) = a2(x)
tq

1 + tr
. where q < p− 1 + r.

3. f3(x, t) = a2(x) ln(1 + tq).
Observe that particular cases of f1 have been considered by many authors,

since this type of nonlinearity models, for instance, reaction–diffusion processes
or logistic problems in population dynamics, (see [25], [30]). For example, when
a1(x) = a2(x) = 1, a multiplicity result was obtained by Takeuchi in [31] under
the restriction p > 2. Later Dong and Cheng [11] proved the same result for all
p > 1. We notice that the Laplacian case was studied by Rabinowitz by combining
critical point theory with the Leray–Schauder degree [28]. For more information
about type f1, see [19], [22], [30], [32], [33] [10], [15] and the cited references therein.

We also observe that the functions f1, f2, f3 above may be written as

f(x, t) = tqh(x, u)

where the mapping t 7−→ h(x, t) is strictly decreasing on (0,+∞) for a.e. x ∈ Ω.
Existence results for nonlinearities of this type have been analyzed by Cañada et
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al [8]. However, in contrast to the present paper, the authors did not study the
multiplicity of solutions.

On the other hand, it is interesting to compare our Problem (P )λ with a dual
case, as it has been investigated in the classical paper of Ambrosetti, Brezis and
Cerami [1]. The model equation with a concave-convex nonlinearity considered in
[1] is −∆u = λuq +ur, u ∈ H1

0 (Ω), where 0 < q < 1 < r ≤ 2∗. The authors proved
that there exists λ̃ > 0 such that the problem above has at least two positive
solutions for 0 < λ < λ̃, at least one positive solution for λ = λ̃ and no positive so-
lution for λ > λ̃. Further results on this type of nonlinearities are given in [12, 13].
The analogous situation for the p-Laplacian has been studied by Garćıa and Peral
[18]. Finally note that in Ambrosetti, Garćıa and Peral also established in [2] the
existence of sign-changing solutions.
There are some recent papers that deal with the compactness of the branches of
solutions of similar equations which are also relevant in the context of this paper:
Cabré and Sanchon [5] considered nonnegative solutions of −∆pu = f(x, u). As-
suming that f(x, u) grows like (1+u)m, where 0 < m < m∗ and m∗ is some critical
value, and introducing the notion of semi-stability, they proved that certain mini-
mizers of the associated energy functional are semi-stable and bounded.
Castorina et al [6] studied minimal solution branches (uλ, λ) of the equation
−∆pu = λh(x)f(u), with 0 < u < 1, and 0 < λ < λ∗, where h is positive and
Hölder continuous, f behaves like (1 − u)−m near u = 1, and λ∗ is some critical
value. They showed that the mapping λ 7→ uλ is non-decreasing, and composed
by semistable solutions.

Our work is organized as follows:
In section 2 we give some definitions and basics facts which we will be used

throughout the article. The proof of Theorem 1.1 is presented in Section 3. Then
we extend our result to even more general nonlinearities in Section 4. Finally we
present a new proof of a well–known result, Lemma 2.2, in an Appendix, section 5.

2. Preliminaries. Sub– and supersolutions

Let λ1(Ω) denote the first eigenvalue of the Dirichlet p-Laplacian.
For convenience we extend the function f(x, t) for negative values of t,

f̃(x, t) =
{
f(x, t) if (x, t) ∈ Ω× [0,+∞)
0 if (x, t) ∈ Ω× (−∞, 0)

,

and we will work with the problem

(P̃ )λ

{
−∆p u = λf̃(x, u) in Ω
u = 0 on ∂Ω,

(2.1)

instead of (P )λ.
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Definition 2.1. A function u ∈ W 1,p(Ω) ∩ L∞(Ω) is said to be a subsolution of
(P̃ )λ if 

∫
Ω
|∇u|p−2∇u · ∇φdx ≤ λ

∫
Ω
f̃(x, u)φdx

for every φ ∈W 1,p
0 (Ω) with φ ≥ 0, and

u ≤ 0 on ∂Ω.

(A function v ∈ W 1,p(Ω) is said to be less than or equal to w ∈ W 1,p(Ω) on ∂Ω
when max{0; v − w} ∈W 1,p

0 (Ω)).
Furthermore, a function u ∈ W 1,p(Ω) ∩ L∞(Ω) is said to be a supersolution of
(P )λ if 

∫
Ω
|∇u|p−2∇u · ∇φdx ≥ λ

∫
Ω
f̃(x, u)φdx

for every φ ∈W 1,p
0 (Ω) with φ ≥ 0, and

u ≥ 0 on ∂Ω.

Finally, a function u ∈W 1,p
0 (Ω)∩L∞(Ω) which is both a sub– and a supersolution,

is called a solution of problem (P̃ )λ.

Remark 2.1. First notice that every solution of (P̃ )λ is nonnegative. To see this,
use u− := max{0;−u} as a test function in (2.1). Integration by parts then leads
to

0 ≤
∫

Ω

|∇u−|p dx = −λ
∫

Ω

f̃(x, u)u− dx ≤ 0,

which implies that u− = 0 a.e. on Ω. Thus, u is a solution of problem (P̃ )λ iff
u is also a solution of problem (P )λ. By the Strong Maximum Principle we then
obtain that every nontrivial solution of (P̃ )λ is positive in Ω. Conditions (H1) and
(H4) imply that there is a constant C > 0 which depends only on f̃ and λ such
that every solution u of problem (P̃ )λ satisfies

‖u‖C1,α(Ω) ≤ C. (2.2)

Indeed, by condition (H4) we have that there is a constant cλ which depends only
on λ such that

λf̃(x, t) ≤ cλ + (1/2)λ1(Ω)tp−1 ∀ (x, t) ∈ Ω× [0,+∞) .

This inequality implies that all solutions of (P̃ )λ are uniformly bounded in the
W 1,p

0 (Ω)−norm. It is well-known that this implies that all solutions (P̃ )λ are uni-
formly bounded in the L∞−norm. By using the regularity results of Guedda and
Veron [20] and Lieberman [24] we then obtain the estimate (2.2).

Finally, condition (H3) implies that if u is nontrivial, then it is positive in Ω
and satisfies

0 >
∂u

∂ν
on ∂Ω, (ν : exterior normal ), (2.3)

see [34].
The following auxiliary result is well-known (see e.g. [3]) and will be basic in

our approach.
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Lemma 2.1. Consider Problem (P̃ )λ under the hypotheses (H1)–(H2).
Let u, u ∈ W 1,p(Ω) ∩ L∞(Ω) be, respectively, a subsolution and a supersolution
of Problem (P̃ )λ, with u(x) ≤ u(x) a.e. in Ω. Then there exists a minimal (and,
respectively, a maximal) weak solution u∗ (resp. u∗) for Problem (P̃ )λ in the “in-
terval”

[u, u] = {u ∈ L∞(Ω) : u(x) ≤ u(x) ≤ u(x) a.e. in Ω}.

In particular, every weak solution u ∈ [u, u] of (P̃ )λ also satisfies u∗(x) ≤ u(x) ≤
u∗(x) for a.e. x ∈ Ω.

The following Lemma is crucial in showing multiplicity of solutions. It has
been shown in the case p = 2 by Brezis and Nirenberg in [4], in the case p > 2
by Guo et al in [23], and in the general case by Garćıa Azorero et al in [17]. The
idea consists in analyzing a penalized minimization problem. The proofs given in
[17] and [23] are quite technical since the constraint involves the gradient of the
admissible functions. We will present a short new proof in the Appendix. Notice
that our constraint merely involves a certain Lq–norm.

Lemma 2.2. Let f : Ω× R→ R be a Caratheodory function which satisfies

|f(x, t)| ≤ C(1 + |t|r) ∀ (x, t) ∈ Ω× R, (2.4)

for some numbers C > 0 and r ∈ [0, p∗ − 1), and assume that u ∈ W 1,p
0 (Ω) is a

weak solution of {
−∆pu = f(x, u) in Ω
u = 0 on ∂Ω . (2.5)

Let I denote the energy functional associated with (2.5), that is

I(v) :=
∫

Ω

(
1
p
|∇v|p − F (x, v)

)
dx, v ∈W 1,p

0 (Ω). (2.6)

Assume finally that u is a local minimizer of I in C1
0 (Ω), that is, there exists a

number ε > 0 such that I(v) ≥ I(u) for every v ∈ C1
0 (Ω) satisfying ‖v−u‖C1(Ω) <

ε. Then u is also a local minimizer in W 1,p
0 (Ω).

3. Proof of the main result

From the hypotheses (H1), (H3) and (H4) it follows that there is a number λ0 > 0
such that

λ1(Ω)tp−1 ≥ λ0f̃(x, t) ∀(x, t) ∈ Ω× [0,+∞). (3.1)

where λ1(Ω) denotes the first eigenvalue of the Dirichlet p−Laplacian.

Lemma 3.1. Problem (P̃ )λ does not have any positive solution for λ < λ0, where
λ0 is given by (3.1).
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Proof. Suppose that (P̃ )λ admits a positive solution uλ for some λ < λ0. Using
uλ as a test function in (P̃ )λ we then obtain∫

Ω

|∇uλ|p dx = λ

∫
Ω

f̃(x, uλ)uλ dx < λ1(Ω)
∫

Ω

upλ dx,

which contradicts to the variational characterization of λ1(Ω). �

Lemma 3.2. Suppose that for some λ′ > 0, Problem (P̃ )λ′ admits a positive solution
uλ′ . Then for every λ > λ′, Problem (P̃ )λ has at least one positive solution.

Proof. We first construct a subsolution u.
1) Assume f satisfies (H5), (i). Since uλ′ is a solution of (P̃ )λ′ , we have that

−∆p uλ′ = λ′f̃(x, uλ′) ≤ λf̃(x, uλ′) in Ω,

that is uλ′ =: u is a subsolution of Problem (P̃ )λ.
2) Assume that f satisfies (H5), (ii). Then there exists a number σ ∈ (0, 1) such
that λ′ = λσq−p+1. Hence

−∆p (σuλ′) = σp−1λ′f̃(x, uλ′) < λf̃(x, σuλ′) in Ω , (3.2)

that is σuλ′ =: u is a subsolution.
A supersolution is constructed as follows: Let e be the solution of the following
problem, {

−∆p e = 1 in Ω
e = 0 on ∂Ω ,

(3.3)

and set e0 := sup{e(x) : x ∈ Ω}. From (H4), and since e, u ∈ C1(Ω) and ∂e/∂ν < 0
on ∂Ω, we have for every k > 0 and large enough,

ke(x) > u(x) in Ω,
∂(ke)
∂ν

<
∂u

∂ν
on ∂Ω, (3.4)

λλ1(Ω) < k(p−1)/2λ0 and λ(e0)p−1f̃(x, t) < tp−1, (3.5)

for all (x, t) ∈ Ω×(
√
k,+∞), where λ0 is the number in (3.1). Then the inequalities

(3.1) and (3.5) imply

λf̃(x, kt) < kp−1 ∀(x, t) ∈ Ω× [0, e0]. (3.6)

Hence
−∆p(ke(x)) = kp−1 > λf̃(x, ke(x)) in Ω, (3.7)

that is, ke =: u is a supersolution of problem (P̃ )λ. Finally, using Lemma 2.1 there
exists a positive solution u of Problem (P̃ )λ satisfying u ≤ u ≤ u. �

In the following we will work with the energy functional associated to problem
(P̃ )λ, that is

Iλ(v) :=
∫

Ω

(
1
p
|∇v|p − λF̃ (x, v)

)
dx, v ∈W 1,p

0 (Ω), (3.8)

where F̃ (x, t) :=
∫ t

0
f̃(x, s) ds, ((x, t) ∈ Ω× R).
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Lemma 3.3. Let λ := inf{λ : (P̃ )λ has a positive solution }. Then 0 < λ < +∞,
and (P̃ )λ has a positive solution for every λ > λ and no positive solution for
0 < λ < λ.

Proof. By our assumptions, Iλ is differentiable, bounded from below, and coercive.
Hence there is a global minimizer of Iλ on W 1,p

0 (Ω) which is solution of (P̃ )λ. In
view of condition (H5), Iλ attains negative values if λ is large enough. Hence we
have that Iλ(uλ) < 0. Using the Lemmata 3.1 and 3.2 this implies that there is
a number λ ∈ (0,+∞) such that problem (P̃ )λ has a solution if λ > λ, and no
solution if λ < λ. �

Lemma 3.4. Let λ > λ and suppose that Problem (P̃ )λ has a unique positive
solution uλ. Then uλ is a local minimizer of Iλ in C1

0 (Ω).

Proof. The idea is to construct a sub– and a supersolution which are strictly
separated from the solution uλ. Let λ < λ′ < λ, and define u and u as in the proof
of Lemma 3.2. Since uλ ∈ C1(Ω), we may add the requirement that the function
u = ke in (3.7) satisfies

u > uλ in Ω, and
∂uλ
∂ν

>
∂u

∂ν
on ∂Ω.

For the construction of a subsolution u we split into two cases:
1) Assume (H5), (i). Then u = uλ′ ≤ uλ in Ω. Set

Ω−r := {x ∈ Ω : dist (x, ∂Ω) > r}, (r > 0),

and notice that Ω−r is a C2–domain for small enough r. Since uλ, uλ′ ∈ C1
0 (Ω),

there is a number r > 0 such that |∇uλ′ |, |∇uλ| > 0 on Ω\Ω−2r and uλ(x), uλ′(x) ∈
(0, δ0) on Ω \ Ω−2r. Together with assumption (H6) this in particular implies

−∆puλ′ + λc0(uλ′)p−1 = λ′f̃(x, uλ′) + λc0(uλ′)p−1 < λ
(
f̃(x, uλ′) + c0(uλ′)p−1

)
≤ λ

(
f̃(x, uλ) + c0(uλ)p−1

)
= −∆puλ + λc0(uλ)p−1 in Ω \ Ω−2r,

in the distributional sense. The Strong Comparison Principle - see for instance
Proposition 5.1 of [14], or Proposition 3 of [7] - then tells us that

uλ′ < uλ in Ω \ Ω−2r, and (3.9)

0 >
∂uλ′

∂ν
>
∂uλ
∂ν

on ∂Ω. (3.10)
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Hence there is a number ε0 > 0 such that uλ ≥ ε0 + u on ∂Ω−r. This implies that
if 0 < ε < ε0 then (uλ′ − uλ + ε)+ ∈W 1,p

0 (Ω−r). Hence

0 ≤
∫

Ω−r

(
|∇uλ′ |p−2∇uλ′ − |∇uλ|p−2∇uλ

)
· ∇(uλ′ − uλ + ε)+ dx

=
∫

Ω−r

(
λ′f̃(x, uλ′)− λf̃(x, uλ)

)
(u− uλ + ε)+ dx, (3.11)

for these ε, where the inequality in (3.11) follows from(
|x|p−2x− |y|p−2y

)
· (x− y) ≥ 0 ∀x, y ∈ RN . (3.12)

Since λ′ < λ, uλ′ ≤ uλ and f̃(x, uλ′(x)) > 0 in Ω−r, and since f̃ is continuous in
the second variable, there exists a number ε1 ∈ (0, ε0) such that

λ′f̃(x, uλ′(x))− λf̃(x, uλ(x)) < 0 on {x ∈ Ω−r : uλ′(x) + ε1 > uλ(x)}.

In view of (3.11) this implies that u+ ε1 ≤ uλ in Ω−r.
2) Assume (H5), (ii). Then u = σuλ′ is a subsolution of (P̃ )λ, where λ′ = λσq−p+1,
and σuλ′ ≤ uλ in Ω. Choosing r > 0 as in case 1) and taking into account that
σq f̃(x, uλ′) < f̃(x, σuλ′) in Ω, an analogous calculus shows that σuλ′ < uλ in Ω
and that (3.10) holds with uλ′ replaced by σuλ′ .
Now setting

A := {v ∈ C1
0 (Ω) : u ≤ v ≤ u},

in any of the above cases, we find that uλ is an interior point of A with respect to
the C1−topology. It is well-known that this implies that uλ is a local minimizer
of Iλ in C1

0 (Ω) (see [17], proof of Theorem 5.2). For the convenience of the reader
we repeat the argument below. Let

f(x, s) =


f̃(x, u(x)) if s < u(x)
f̃(x, s) if u(x) ≤ s ≤ u(x)
f̃(x, u(x)) if u(x) < s

,

F (x, t) :=
∫ t

0
f(x, s) ds, ((x, t) ∈ Ω×R), and define a functional Iλ analogously as

Iλ with F replaced by F . From our assumptions on the nonlinearity f and standard
arguments it follows that Iλ has a global minimizer u0 ∈W 1,p

0 (Ω). Clearly u0 is a
weak solution of {

−∆pu0 = λf(x, u0) in Ω,
u0 = 0 on ∂Ω.

(3.13)

Moreover, well-known regularity results (see e.g. [20]) show that u0 ∈ C1
0 (Ω). On

the other hand, using (u− u0)+ as a test function for (3.13) and (P̃ )λ, we obtain,
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using (3.12),

0 ≤
∫
{u>u0}

(|∇u|p−2∇u− |∇u0|p−2∇u0) · (∇u−∇u0) dx

≤ λ

∫
{u>u0}

(f̃(x, u)− f(x, u0))(u− u0) = 0,

which implies that u0 ≥ u. Analogously one shows that u0 ≤ u. Hence we have that
u0 ∈ A, which implies uλ = u0, by our hypothesis. Since uλ is an interior point
of A, there exists a number ε > 0 such that one has u ∈ A for every u ∈ C1

0 (Ω)
satisfying ‖uλ − u‖C1(Ω) < ε. Furthermore, we find that for every u ∈ A,

Iλ(u)− Iλ(u) = −λ
∫

Ω

(
F̃ (x, u)− F (x, u)

)
dx

= −λ
∫

Ω

∫ u

0

(
f̃(x, s)− f(x, s)

)
ds dx

which is a constant independent of u. Hence uλ is a local minimizer of Iλ in
C1

0 (Ω). �

Proof of Theorem 1.1. We argue by contradiction, i.e., we suppose that there is a
number λ > λ such that Problem (P̃ )λ has a unique positive solution uλ. Then
the Lemmata 3.4 and 2.2 imply that the solution uλ is a local minimizer of Iλ in
W 1,p

0 (Ω). Furthermore, another local minimizer of Iλ on W 1,p
0 (Ω) is given by 0.

Since the functional Iλ is coercive, it follows that Iλ satisfies the (PS)–condition.
Then applying an extended version of the Mountain Pass Theorem due to Pucci
and Serrin [27], we obtain the existence of a third critical point of Iλ, which con-
tradicts our assumption.

Finally we claim that problem (P̃ )λ has a positive solution. By assumption
(H3) there is a number t0 > 0 such that

(λ+ 1)f̃(x, t) ≤ λ1(Ω)
2

tp−1 ∀(x, t) ∈ Ω× [0, t0] (3.14)

Let {λn} a strictly decreasing sequence with limn→∞ λn = λ, λn ∈ (λ, λ + 1),
and let uλn be a positive solution of (P̃ )λn , n = 1, 2, . . .. We will show that (3.14)
implies that

‖uλn‖∞ > t0 n = 1, 2, . . . . (3.15)

In fact, assume that uλn ≤ t0 in Ω. Then condition (3.14) gives∫
Ω

|∇uλn |p dx = λn

∫
Ω

f̃(x, uλn)uλn dx ≤
λ1(Ω)

2

∫
Ω

upλn dx,

which contradicts the variational characterization of λ1(Ω). Hence we obtain (3.15).
As in Remark 2.1 we then have that the functions uλn are equibounded in C1,α(Ω).
Thus by Arzela-Ascoli’s Theorem there is a subsequence of {uλn} which converges
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in C1
0 (Ω) to a function u ∈ C1

0 (Ω) which can be identified easily as a solution of
problem (P̃ )λ, and (3.15) shows that

‖u‖∞ ≥ t0. (3.16)

This proves the claim. �

4. Concluding Remarks

We conclude our work with some examples and comments of our main result.
Assume first that f satisfies (H1)–(H4), (H5),(ii), (H6), except condition

(1.1), but instead suppose that there exists a number t0 > 0, such that f(x, t0) ≤ 0
for every x ∈ Ω. Then any solution of the modified problem,

(P̂λ)
{
−∆u = λf̂(x, u) in Ω,
u = 0 on ∂Ω

, (4.1)

where f̂ is the truncated function

f̂(x, t) =

{
f̃(x, t) if t ≤ t0
f̃(x, t0) if t > t0

satisfies u(x) ≤ t0 and is also a solution of (P )λ. Notice that the truncated function
f̂ satisfies (1.1). This means that we obtain at least two solutions for large enough
λ even in situations when f̃ has supercritical growth at infinity. However, it might
be a difficult question, whether or not there are solutions of the original problem
which are not solutions of the truncated problem in such a case. We illustrate this
be means of a simple example: Let

f(x, t) = a(x)tq|1− t|,

where p−1 < q < p∗−2 and a ∈ L∞(Ω). Then, it is easy to see that Problem (P )λ
has a Mountain Pass solution for any λ > 0. By using the truncation argument
at t0 = 1 we obtain the existence of a positive constant λ such that the Problem
(P̂ )λ has two solutions for λ > λ and no solution for 0 < λ < λ. This means
in particular that the Mountain Pass solution uλ of the Problem (P )λ satisfies
‖uλ‖L∞(Ω) > 1 for 0 < λ < λ.

On the other hand, the nonexistence of solutions for the original problem for
λ small enough can be established, if there exists a positive constant t0 such that
f(x, t) ≤ 0 for all t ≥ t0. Indeed, applying the Strong Maximum Principle, it is
easy to see that any solution of the original problem is bounded from above by t0,
which means that the original and the truncated problem are equivalent in such a
case.

Finally we mention that we may also deal with nonlinearities which involve
nonpositive perturbations:
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In fact, let f and k be functions satisfying conditions (H1)–(H4), (H6), with f
positive and k nonpositive on Ω× (0,∞), and consider the problem

(K)λ

{
−∆pu = λf(x, u) + k(x, u) in Ω,
u = 0 on ∂Ω . (4.2)

By slightly modifying the proofs of Lemma 3.2 and Lemma 3.4 in case 1), it easy
to see that the conclusions of Theorem 1.1 hold for the family of problems (K)λ,
(λ > 0).

We emphasize that in the context of multiplicity, nonlinearities as in (4.2)
have been studied only in the case that both f and k are homogeneous in the second
variable, and more precisely, for f(x, t) = a(x)tq, k(x, t) = −b(x)tr, (a, b ∈ L∞(Ω),
a, b > 0, r > q > p− 1), (see [10]). However, a simple linear transformation shows
that the families (P )λ and (K)λ are equivalent in such a case.

5. Appendix

Proof of Lemma 2.2. First observe that due to the growth conditions on f and
the smoothness of Ω we have that u ∈ C1,α(Ω) for some α ∈ (0, 1), see [20]. Let
q ∈ (r, p∗ − 1), where r is the number from (2.4),

K(w) :=
1

q + 1

∫
Ω

|w(x)− u(x)|q+1 dx, (w ∈W 1,p
0 (Ω)),

and
Sε := {v ∈W 1,p

0 (Ω) : K(v) ≤ ε}, (ε > 0).

Assume that the conclusion of Lemma 2.2 is not true. Then there exists for every
ε ∈ (0, 1] a function vε ∈ Sε such that I(vε) < I(u). Moreover, we may assume
w.l.o.g., that vε is a global minimizer of I in Sε.
In the following, let C be a generic positive constant which may vary from line
to line, and is independent of ε, and let 〈·, ·〉 denote the duality product between
W 1,p

0 (Ω) and its dual space. We consider two cases.

1) Let K(vε) < ε. Then vε is also a local minimizer of I in W 1,p
0 (Ω). Hence vε is

a solution of (2.5), which implies that

‖vε‖C1,α(Ω) ≤ C, (5.1)

where α ∈ (0, 1), and the constant C depends only on Ω, ‖u‖L∞ and q.

2) Let K(vε) = ε. Then there exists a number µε ∈ R - a Lagrangean multiplier -
such that I ′(vε) = µεK

′(vε), i.e., vε is a weak W 1,p
0 –solution of{

−∆pvε = γ(µε, x, vε) in Ω,
u = 0 on ∂Ω, (5.2)

where γ is defined by

γ(s, x, t) := f(x, t) + s|t− u(x)|q−1(t− u(x)), ((s, x, t) ∈ R× Ω× R).
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First assume that µε > 0. Then there exists h ∈ W 1,p
0 (Ω) such that 〈I ′(vε), h〉 <

0 and 〈K ′(vε), h〉 < 0, which implies 〈K ′(vε), h〉 = µ−1
ε 〈I ′(vε), h〉 < 0. Using

Taylor’s theorem, this means that there exists a number τ0(= τ0(ε)) > 0 such that
K(vε + τh) < K(vε) and also I(vε + τh) < I(vε) for every τ ∈ (0, τ0). The first of
these inequalities implies that (vε + τh) ∈ Sε for these τ . Hence vε is not a global
minimizer of I in Sε, a contradiction. It follows that µε ≤ 0.
First suppose µε ∈ [−1, 0]. Since u ∈ L∞(Ω), we have in view of (2.4),

|γ(s, x, t)| ≤ C(1 + |t|q) ∀(s, x, t) ∈ [−1, 0]× Ω× R

where C is a positive constant depending only on ‖u‖∞, q and Ω. Now, ε ≤ 1
implies that ‖vε‖Lq+1 ≤ C(‖u‖∞,Ω, q). Hence, this inequality together with the
equation (5.2) give us a W 1,p

0 (Ω)−estimate depending only on ‖u‖∞, q and Ω.
Thus vε is bounded in L∞(Ω)−norm by a constant which does not depend on ε.
Therefore vε is bounded in C1,α(Ω)−norm by a constant which does not dependent
on ε (see [24]). This implies (5.1) in this case.
Suppose finally that µε ≤ −1. Since there exists a number M > 0, which is
independent on ε, such that

γ(s, x, t) < 0 ∀(s, x, t) ∈ (−∞,−1]× Ω× (M,+∞), and
γ(s, x, t) > 0 ∀(s, x, t) ∈ (−∞,−1]× Ω× (−∞,−M),

the Maximum Principle tells us that |vε(x)| ≤M in Ω. Using (vε − u)|vε − u|β−1,
with β ≥ 1, as a test function in (2.5) and (5.2) we obtain,

0 ≤ β

∫
Ω

(|∇vε|p−2∇vε − |∇u|p−2∇u) · ∇(vε − u)|vε − u|β−1 dx

=
∫
Ω

(f(x, vε)− f(x, u)) (vε − u) |vε − u|β−1 dx+ µε

∫
Ω

|vε − u|β+q dx.

In view of the bounds for u and vε and Hölder’s inequality this implies

−µε‖vε − u‖qLβ+q(Ω)
≤ C|Ω|q/(q+β),

where C does not depend on β and ε. Passing to the limit β → +∞ this leads to

−µε‖vε − u‖qL∞(Ω) ≤ C.

Hence we have that
|γ(µε, x, vε(x))| ≤ C in Ω,

from which we again obtain (5.1).
Thus we have shown that the functions vε, (0 < ε ≤ 1), are equibounded in
C1,α(Ω). Using Ascoli–Arzela’s Theorem we find a sequence εn ↘ 0 such that

vεn → u in C1(Ω).

Since I(vεn) < I(u), we then have that u is not a local minimizer of I in C1
0 (Ω),

a contradiction. �
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