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For nonnegative L-measurable functions u : R" -+ R a continuous homotopy u', 
0 < t 5 + co, is constructed, connecting u with its Steinersymmetrization u*. It is shown 
that a number of familiar relations between u and u* including some integral inequalities 
are also valid for u and u'. The method is applicable to prove symmetry properties of 
stationary solutions of variational problems. 

1. Introduction 

Consider a minimum problem of the form 

F(x, u, Vu) dx -+ min! , J ( u )  := u E K , 
R 

(1) 

where K is a convex subset of some functions space, e.g. W$j'(SZ) or Lp(sl), p > 1, and 
SZ c R" is a domain lying symmetrically to the hyperplane {y = 0}, {x = (x', y) ,  x' E R"-', 
y E R). If u E K ,  we often also have u* E K ,  where u* denotes the Steiner-symmetrization of 
u with respect to y ,  and 

J(u*)  I J(u)  . 

It can be proved for the absolute minimum u of (1) that u = u*. 
This argumentation fails for local minima or stationary points w of the functional J .  

Therefore the following question is natural: Is there a (in the norm of X )  continuous 
homotopy 

t H d ,  O I t < + 0 3 ,  u 0 = u ,  U r n  = u * ,  

such that for u E K we also have u' E K and 
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or sharper: 

(2) J ( v )  - J ( d )  2 d l ld  - uIJX,  d > 0 ,  0 I t I + CO? 

In this cases we could prove symmetry properties of w. 
There are examples of such homotopies - called continuous symmetrization - in the 

literature. POLYA and SZEGO [4] considered nonnegative functions u E C(R”) n C’(O), where 
L2 is the compact support of u, which are quasiconcave in y ,  i.e., for any x’ E R”-’ and 
c > 0 the set { y  : u(x’ ,  y )  > c} is convex. If we write ( y  : ~ ( x ’ ,  y )  > c} =: (y, ,  yz), the relations 

(3) { Y : U ~ ( X ’ , Y )  > C} = (y t ,yy” , ) ,  x ‘ E R “ - ’ ,  c 2 0 ,  

with 
S 

Y; := Y l  - - ( Y l  + Y z )  > 

ys, I =  y ,  - - ( y ,  + y z ) ,  

2 (4) 

S 
0 I s 5 1 ,  

2 

define new functions us E C(R”) n C’(SZs) with compact support a“, 0 I s I 1, where the 
domains SZ“ again result from (3), (4) in the case c = 0. 

Thus the mapping s H us, 0 I s 5 1, realizes a shift of the intervals {u(x’, .) > c }  in the 
y-direction with a “velocity” equally to the distance of their centre from the hyperplane 
{ y  = 0 }  at the time s = 0, (see Figure 1). Obviously u1 is the Steiner-symmetrization of u. 

The authors proved then some integral inequalities. Thus the arc length and the outer and 
inner radius of a smooth convex plane curve and the capacity of a ringshaped plane domain 
bounded by two convex curves are diminished under continuous symmetrization. 

BRASCAMP, LIEB and LUTTINGER [ 13 generalized the above construction for continuous 
functions u for which the sets ( ~ ( x ’ ,  .) > c} consist only of a finite number of intervals. 
At the beginning the intervals of these level sets are shifted according to the rules (3), (4) 
up to a moment, in which two (or more) of them collide. At this moment the same procedure 
starts anew, where the rules (4) are to be applied on the already shifted set. This argument 
can be repeated again and again, such that after a finite number of steps the function is 
transformed into its Steiner-symmetrization. The authors exploited this kind of continuous 
symmetrization together with Brunn’s part of the Brunn-Minkowski-theorem to prove a 

“I 

X 

Fig. 1 
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very general convolution inequality for the cases of the Steiner- and Schwarz-symmetriza- 
tions. 

Another variant of continuous symmetrization for functions, which are not quasiconcave, 
is considered by KAWOHL and MATANO [2,3]. They proved symmetry properties of local 
minima of variational problems with various integral side conditions. 

In this paper we describe a version of continuous symmetrization, which is in fact a 
generalization of the construction of [I] on L-measurable functions, and give its "LP-theory". 
In Section 2 we introduce for L-measurable sets M E R" a scale M', 0 5 t 5 + GO, and 
prove some properties of the mapping M + M', e.g. the monotonicity, the semigroup- 
property and the preservation of L-measure. 

Then we define a scale v', 0 5 t I +GO, corresponding to a L-measurable function 
u :  R" -, R, (Section 3). This is performed symmetrizing the level sets (u(x', * )  > c } ,  x' E R"-', 
c E R, continuously. The mapping v -+ v', 0 I t S + GO, has a number of properties which 
are already known in the special case t = +GO. Those are the equimeasurability, the 
nonexpansiveness in LP(R") and some inequalities for product-integrals and convolutions 
of functions including the already mentioned general inequality from [l] (Section 4). We 
underline here that most of the proofs depend essentially on the monotonicity and the 
semigroup-property of the continuous symmetrization of sets and on an approximation 
argument with step-functions. 

In Section 5 we prove the equicontinuity of the symmetrized functions which is useful 
for subsequent applications. 

Section 6 deals with the common and different properties between our kind of symmetriza- 
tion and the version of [2, 31. 

In a later article we will prove inequalities of the sharp form (2), e.g., if J is the 
Dirichlet-integral, and investigate some applications on variational problems. 

2. Continuous symmetrization of sets 

We introduce some notations. For any set M in R" we denote with x ( M )  its characteristic 
function. Let M(R") be the whole of all L-measurable subsets of R". If M E M(R") we denote 
by IMI its n-dimensional L-measure and by 

S ( M )  = IMI-' f x d x  
M 

its centre of gravity if IMI < + GO and the above integral converges. We write M - N if 
the sets M , N  E M(R") are equivalent, i.e., if we have IM \ NI = IN \ MI = 0. 

Definition 1. (Symmetrization of L-measurable sets). Let M E M(R). Then 

is called the symmetrization of M .  
We have 

(5 )  (M*)* = M* . 
According to (3) we now define the continuous symmetrization of open intervals in R. 
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Definition 2.1. Let M = (a, h), - co < a < b < + 03, be a bounded open interval in R. 
Then the scale of intervals M' := (a', b'), 0 5 t I + 00, where 

1 
2 
1 
2 

a' := - (a - b + e-'(a + b)) , (6) 

b' := - (b - a + e-'(a + b)) , 

is called the continuous symmetrization of M .  

We obtained the relations (6) from (4) by replacing a = y , ,  b = y ,  and t = - log (1 - s). 
This yields the semigroup-property 

(7) 

which will be used later. 

(M')'= M S + ' ,  0 5 s 5 s + t 5 +a, 

Note that in (6) we set e -m = 0 and we take into account the usual rules 

c + 02 = +co + c = co, 

for c 2 0 in (7). 
Next we extend the notion of continuous symmetrization on open sets in R. 

Definition 2.2. Let M c R be an open set. Then there are scales of sets M ( t ) ,  0 5 t + co, 
whose elements M ( t )  have the following properties: 

(i) M(0)  = M ,  

and 

(ii) if I is some bounded open interval with I G M(s) ,  s E [0, + 001, then also I' E M ( s  + t )  
for any t E [0, + 001. 

For any t E [0, + co] we introduce a set 

8 ( t )  := { M ( t ) :  M ( t )  satisfies (i), (ii)} . 
The the scale of sets M', 0 5 t 5 + co, defined by the relations 

M' := n ~ ( t ) ,  
M (')E b ( t )  

is called the continuous symmetrization of M .  

Note that the Definitions 2.1 and 2.2 are consistent. Later we shall show that M' is open 

From Definition 2.2 it follows that the scale M', 0 5 t I + "5, satisfies the semigroup- 
if M is open (see (18)). 

property (7), (i) and (ii) and the following monotonicity-property: 

(8) If M E N ,  then M' E N' for any t E [ O ,  +a]. 

(8) immediately that 

(9) 

For any t E [0, + co] and for any arbitrary two open sets M and N in R, it follows from 

( M  n N)' G M' n Nf 
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and 

(10) ( M  u N)' 2 Mi u N ' .  

Now we show how simple sets are to be continuously symmetrized. 

Remark 1 (Continuous symmetrization of open sets). 
1. (Crucial case). Let M be a finite union of pairwise disjoint bounded open intervals: 

Taking s = 0 and I = I, ,  k = 1, ..., m, in (ii) it follows 

The intervals ( f k ) *  are disjoint for t less than or equal to 

and for t = t ,  some of them meet each other in their endpoints. Further, the relation (12) 
is valid with the equality sign for 0 5 t 5 t ,  because of the minimality of the sets Mi. 

we can argue analogously for parameters t 2 t,. Thus we get by 
induction numbers 

Since Mi = 

m =: m, > m, > ... > mN-, := 1, 

0 =: to  < t ,  < ... < t ,  := +a, 

and bounded open intervals I , , , ,  k = 1, . .. , m,, such that for any t E (tr, tl+ 
we have 

1 = 0, . . . , N - 1, 

where the intervals (I"[)'-'' are pairwise disjoint, some of them meet each other in their 
endpoints for t = t l +  ,, and 

lim IM"+' \ M'I = 0 ,  1 = 0, ..., N - 1. 
i t t i c 1  

(14) 

Further it follows that 

(15) IM'I = (MI, 0 I t  I f c o ,  

(preservation of L-measure), 

and 
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2. Let M = (u, +a), a E R .  For b > u we have then 

( q b )  =: M ,  c M ,  and (Mb)' c M ' ,  t > 0 .  

A short computation shows that for any t > 0 we get 
+ m  u (MJ' = R ,  

n= 1 

and therefore also 

(16) M ' = R ,  O < t < + c o .  

Similarly, (16) can be shown if M = (- co, b), b E R ,  or if M is any open set containing an 
unbounded interval. 

3. Let M be any open set. Then we have 
f r n  + W  n 

M =  U I k =  O M , , ,  where M , =  U I k ,  n = l , 2  ,..., 
k =  1 n = 1  k =  1 

(17) 

and the 1;s are pairwise disjoint open intervals. It follows that 

( M J  E c M ' ,  n = 1,2, ..., 0 5 t 5 +a, 

and in view of the minimality of the sets M' we have that 
f r n  

M' = u (M,,)',  0 5 t < + C O ,  
n= 1 

(18) 

i.e., the symmetrized sets M', 0 < t 5 +a, are open too. If M has finite measure, then 
(15) holds. Otherwise we can conclude that 

(19) M" = R .  

Now we introduce a continuous symmetrization of L-measurable sets in R. The sym- 
metrized sets are unique up to nullsets. This will be sufficient for our purposes. 

Remark 2. Let M E M ( R ) .  Then we have a representation 
+ W  

M =  n o n \ N ,  
n= 1 

(20) 

where 0, 2 On+ 1, n = 1,2, ..., are open sets and N is a nullset. We observe that for any 
t E [0, + co] the set 

n = l  

is unique except for a nullset, i.e., it depends not on the special representation (20). In fact, let 
f r n  

M = n o;\N 
n= 1 
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be any other representation of M of the form (20) and 
fa, 

M ( ~ Y  = n W, 
n = l  

then we have 

(0, u 0;)' 2 (On)' u (0;)' 2 (0,)t n (0;)' z (0, n Oh)', n = 1,2, ..., 
from which we easily conclude that M ( t )  - M(t)'. 

This gives rise to the following 

Definition 2.3. Let M be any set in M(R) which is not open. Then any scale of sets M', 
0 I t I +co, with 

(22) M' - M(t), 

where the sets M(t) are defined by (20) and (21), is called a continuous symmetrization of M.  
We can immediately conclude: 

Theorem 1. Let M E  M(R). Then (15)  is valid. Further there is a version M ,  0 5 t I + co, 
such that relations (7) - (10) hold and 

(23) M" = M*.  

Remark 3. Let M, N E M(R). Then for any t E [0, + 001 we have by (9) that 

M ' \ N ' = M ' \ ( M ' n N ' ) s  M ' \ ( M n N ) ' .  

Since IM \ NI = IM'\ (M n N)'L we conclude the following relation (for later reference): 

(24) IM'\N'I I IM\NI, 0 5 t I +a. 

Remark 4. Let M be as in Remark 1, case 1. Then a simple computation shows that 

S(M') = e - 'S (M)  for any t E [0, + co] . 
But by approximation (25) follows also in the case that M E  M(R) and that S ( M )  exists. 

Now we prove some continuity properties of the symmetrization. 

Theorem 2 (Continuity of the mapping M -+ M'). Let M, M, E M(R), n = 1,2, . . . Then if 
(26) M,, -+ M in measure, 

it follows that 

(27) (M,,)' --f M' in measure and uniformly in 0 I t i + 00 , 

Further if 
(28) x(MJ 4 1 a.e. in M ,  

then for  any t E [0, + co] 
(29) x(M:) -+ 1 ax. in M'. 
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r f ;  moreover, there is a set E E M(R) offinite L-measure, such that 

(30) M , M , c E ,  n =  1,2 ,..., 
x(Mn)  + x ( M )  a.e. in E ,  

then,for any t E [0, f. co] 

(31) x(M;)  + x(M')  a.e. in 2 .  

Proof.  Assume first (26). Then assertion (27) follows from the inequalities 

/ M i  \ M'I I IM, \ MI and IM'\ MLI 5 IM \ M,I. 

If the sequence M n  suffices (28) then by Egorov's Theorem ([6], p. 108) for any 6 > 0 
there is a measurable subset M ,  of M with IM \ M,I I 6 such that the convergence (28) is 
uniformly on M,. Therefore we have M ,  c M ,  for sufficiently large n. Because of (8) there 
are versions M', M i ,  such that M i  c M i  for the above n and also M i  G M i ,  0 I t I + a. 
Taking 6 + 0 it follows (29). 

Next we assume (30) and introduce the sets 
+ W  

N n : =  u M , ,  n = 1,2 ,..., 
k = n  

For any t E [0, + co] we have 

N i  2 Nk+l 3 M ' ,  

lim 1 x (N; )  = o 

n = 1,2,  ... , 
and 

n-+m EL\Mt 

because of (29). Since the sequence x(Nh), n = 1,2, ..., is nonnegative and monotone 
decreasing it follows that 

(32) x ( N ~ )  -+ 0 a.e. in E' \ M' . 

Now from (29) and (32) we conclude (31). 

In general we cannot symmetrize sets of infinite measure continuously, which can be seen 
from Remark 1, case 2. This makes the restrictions in the following theorem intelligible. 

Theorem 3 (Continuity of the mapping t H M'). Let M E M(R) have afinite L-measure 
and let t,, n = 1,2, . .., be any sequence converging to a number t E [0, + co]. Then 

(33) M n  -+ M i  in measure. 

If the set M is open, then 

(34) z (M")  + 1 a.e. in A4' , 

and if moreover the set 
+ W  

E : =  u Mi, 
n =  1 

(35) 
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has finite L-measure, then 

(36) x(M'") + x(M') a.e. in R . 

Proof.  Let first M be an open set with finite measure and take E > 0 small. Since M 

has a representation of the form (17), we get ( M  \ M,( < - with m = m(&) large enough. 

By the earlier considerations, the sets (M,)'" consist of no more than m open intervals 
with a length greater than or equal to min {lIk( : k = 1, . . . , m>, and the boundaries of the 
intervals depend continuously on the parameter t,. Therefore we can find a set N ,  such 
that for sufficiently large n we have 

& 

2 

& 
N ,  E M',n and IMk \ N,I < -. 

Thus we get IMtn \ N,I < E for these n, which proves (34). 

2 

Now assume (35). Setting 

N , : =  GMtn, 
k = n  

we get 
E z N ,  2 N,+l 2 M ' ,  

lim x(N,)  = 0.  

n = 1,2 ,..., 
and 

n+ + w E\M* 

Since the sequence x(N,), n = 1,2, . . . , is nonnegative and monotone decreasing, it follows 
that 

x(N,)  + 0 a.e. in E \ M' , 

which proves (36). 
Now take M E M(R) with IMI < + 00. Then the representations (20) and (21) are valid. 

For a given E > 0 we take m large enough such that 10, \ MI < - and then no large enough 
such that for any n 2 no 

& 

2 

holds. Then it follows that 

IM'I - IM' n M ' n  = - 10: n O',.l - 10; \ M'I + l(0; n 02) \ (M' n Mtn)l 

& 
< - + 10',n\Mt"l < E ,  

2 
which proves (33). 

The following lemma will be useful to prove continuity properties of symmetrized 
functions. 

3 Math. Nachr., Bd. 172 
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Lemma 1. Let M ,  N be open sets with M E N .  Then 

(37) dist{M; a N )  I dist{M'; aW>, 0 I t I +a 
m 

Proof :  Assume that N = u Ji for pairwise disjoint open intervals Ji. Then we have 

that M = u M i  for open sets M i  5 J i ,  i = 1, .. . , m. If we denote by li(t) and I i  the smallest 

open intervals containing Mi and M i ,  respectively, then a short computation shows that 
Zi(t)  E 1: and 

i =  1 
m 

i = l  

dist{li; aJi) I dist{Ii; aJ:) , i = 1, ..., m ,  0 I t .s + w . 

If t ,  is the largest number t > 0 for which the intervals Ji ,  i = 1, ..., rn, remain disjoint, 
we get for 0 I t < t ,  that 

dist(M; aN) = min{dist{M,; aJi) : i  = 1, ..., rn} 

= min {dist { Z i ;  a J i }  : i = 1, . . . , m> 

5 min{dist{Zf; aJg}:i = 1, ..., m }  

s min {dist { M : ;  aJ:} : i = 1, . . . , m }  = dist { M'; aN'}  . 

The value dist{M'; aN'}  may have a jump of positive magnitude crossing t = t,. Now 
because of the semigroup-property (7) the assertion (37) follows for any t E [0, + a]. 

If M and N are open sets the assertion follows by approximation. 

Now we introduce the continuous symmetrization of sets in M(R"), n 2 2. Let M E R". 
We set 

M' := {x' E R"- : (x', y) E M ,  y E R) , (the projection of M on R"- ') 

and 

M ( x ' )  := {y E R: (x', y )  E M ,  x' E M'} , (the intersection of M with (x', R)) . 

Note that any set M E M(R") has the representation 

M = {x = (x', y): y E M(x') ,  x' E M }  

where M' E R"-' and for almost any x' E R"-' M(x ' )  E M(R). If, moreover, M is open, 
then the sets M(x') are open in R for any x' E R"- '. 

Definition 3. Let M E M(R"). Then the set 

1 1 
2 2 

x = (x', y): - - IM(x')l < y < - IM(x')l, X' E M 

is called the (Steiner-)symmetrization of M with respect to y .  
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Definition 4.1. Let M be an open set in R". Then the scale of sets M', 0 I t s + 00, with 

M' = {X = (x', y ) :  y E (M(x'))*, X' E M ' }  , 

where the sets (M(x'))' are defined by Definition 2.2, is called the continuous symnzetrization 
of M .  

Definition 4.2. Let M E  M(R") and suppose that M is not open. Then any scale of sets 
M', 0 I t I +m, with 

M ' N  {X = ( ~ ' , y ) : y ~ ( M ( x ' ) ) ( t ) , x ' ~ M ' ) ,  

where the sets (M(x'))(t) are defined by (20), (21), is called a continuous (Seiner-)- 
symmetrization of M with respect .to y.  

Theorem 4. Theorems 1 ,2  and 3, Lemma I and Remark 2 remain valid for  the continuous 
symmetrization of sets in M(R"), n 2 2. 

Proof .  We want to show (37) in the case n 2 2. Let M 5 N E R". Then for any 
t E [0, + co] we have that 

[dist{M'; aN'}I2 
= min{lx' - < ' I 2  + (dist{(M(x'))'; a (N( t ' ) )*} )2 :~ '~M' ,  <'EN'} .  

Because of Pythagoras' Theorem the above minima are attained for two values x', 5' E R"-' 
with (M(x')r E (N(<'))' (see Figure2). But if x', ~ ' E R " - '  are any two values with 
M(x') G N ( t ' ) ,  we have by Lemma 1 that 

dist{M(x'); aN(<')} I dist{(M(x'))'; a ( N ( < ' ) ) ' } ,  0 I t 5 + co , 
and (37) follows. 

The proof of the other properties are simple and therefore we leave them to the reader. 

Fig. 2 

3* 
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For a set M E M(R") with finite measure we can define the coordinates of the centre of 
gravity by 

if the above integrals converge. 

Remark 5. Let M E M(R") and let the numbers S,(M), S,,(M), i = 1, . . . , n 

(38) 

(39) S,(M') = e-'S,(M), 0 5 t I +a. 

&,(M') = s , ( W  7 i = 1, ..., II - 1 ,  

3. Continuous symmetrization of functions 

We consider function f : R" + R with the following property: 

(40) There is a number cf E [- GO, + a), such that f(x) 2 cf 

- 1, exist. Then 

on R", 
and for any c > cf -the level sets {x E R :f(x) > c} have finite L-measure. 

We denote by F(R") the set of functions satisfying (40). Iff, g E F(R") and f = g a.e., then 
we write f -  g. Frequently we use the subclass F+(R") of F(R") given by the functions 
having the number cf in (40) equal to zero. We remark that the class F(R") is large enough 
to contain functions f for which the set {f < cf} has infinite measure. If f, g E F(R") are 
bounded below, we get cf + g) E F(R"), and if 2 > 0 then (An E F(R"). Further if we define 
a function J by 

f ( x )  := max {f(x); c> , x E R" , c E R , 

then also J c  F(R"). 
Finally if f is continuous, then the level sets {f > cf are open for any c E R. 

Definition 5. Let f~ F(R) and let 

m f ( c )  := I{x E R:f(x) > c)l , c > c f ,  

be the corresponding distribution function off.  We set 

1 
2 

x = X ( c )  := - m f ( c ) ,  c > cf . 

Then the inverse function f *  E F(R) satisfying the relations 

c = f*(x) = f*(-x),  c > C f ,  

is called the symmetrization off. 
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Definition6. Let f EF(R"), n 2 2. Then for almost any x'ER"-' there exists the 
distribution function 

mf(x ' ,  c) := I (y: f (x ' ,  Y )  > .}I , c > c f ,  

1 
2 

and the function y = Y(x', c) := - rnf(x', c) has an inverse function f* 

c = f*(X', y )  = f*(x', - y ) ,  c > C f  . 
f * is called the (Steiner-)symmetrization off wilh respect to y .  

Definition 7.1. Let f E F(R") be continuous. Then the scale of functions f', 0 I t I + 00, 
defined by all the relations 

( S ' > c ) : = { f > c j ' ,  C > C f '  

{f' = c/} :=R"\  u {f > c}', 
C > C f  

is called the continuous (Steiner-)symmetrization off with respect t o y  in the case n 2 2, 
and the continuous symmetrization off in the case n = 1. 

Definition 7.2. Let f E F(R") be not continuous. Then any scale of functions 

f , O < t l  +00, 
defined by all the relations 

(41) {f'> c} - {f> c}', c > C f ,  

{f'= C/> R"\  u {f> c} ' ,  

{ f  = +a) n (f> c } ' ,  

C > C f  

C > C f  

is called a continuous (Steiner-)symmetrization off with respect to y in the case n 2 2, and 
a continuous symmetrization off in the case n = 1. 

We remark that in the right-hand sides of (41) we used arbitrary scales of level sets 
{f > c}'. Therefore the functions f are unique except for the nullsets. 

Iff is a step-function (see Figure 3a-c), then there are sets M i  E M(R") with Mi 2 M i +  
i = 1, ..., m - 1, and numbers co E R, ci E R + ,  i = 1, ..., n, such that 

Then we have M: 2 ... 2 M k  and because of (41) 

0 5 t 5. + 00. 
Any function f E F(R") can be approximated in measure by step-functions of the form 

(42), where the sets M i  may consist of finitely many intervals only, and where all the ci 
coincide. 

m 

f = co + c C,X(Mf), 
i = l  

(43) 
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Fig. 3a 
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Fig. 3 b 

Fig. 3c 

The following properties are easy applications of the results of the previous section on 
the level sets of symmetrized functions. 

Theorem 5. Let f, g E F(R"), ,I > 0, d E R, cf < a < b, cf < c, 0 I t I t + s I + co. 
Then 

(44) (f+ d) '-f  + d ;  

(45) (V)' - w ;  
(46) 

(47) 

{fr c}: - {y 2 c } ;  

) { u  5 j < b}l = I{a I f' < b}l , ($reservation of L-measure) ; 
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(48) f' I g' a.e. if f I g a.e., (monotonicity) ; 

(49) f"" N cf')" , (semigroup-property) ; 

(50) (cf)' Af') . 
We introduce now the centre S ( f )  of functions f~ F+(R"). In the case n = 1 we set 

and if n 2 2 we set 

S,(f) := ( s  f (x)  dx)-l R" s Yf(4 dx > 
R" 

if the above integrals converge. S ( f )  is the centre of gravity of R" with mass density f ( x ) .  

Remark 6. Let f~ F(R"), t E [0, + a] and suppose that S ( f )  exists. Then we get in the 
case n = 1 that 

(52) S(f') = (&c,(f)? * - . >  Sxn-l(f), e - ' S , C f ) ) .  

Proof.  The relations (51) and (52) follow from Remark 5 for step-functions by an easy 
calculation and then for functions f E F(R") by approximation. 

According with Theorems 2 and 3 we have the following continuity properties: 

Theorem 6 (Continuity of the mapping f + f ' ) .  Let f, fn E F(R"), n = 1,2, . . . , be a.e.finite 
functions and assume that there is a set E E M(R") of finite measure and a number co E R 
such that 

(53) J'2 c o ,  f ,  2 co in R", (f> co)  E E ,  {.f, > co) c E ,  n = 1,2, .... 

r f  

(54) f, + f in measure, 

then 

(55) f: .+ f' in measure and uniformly in t E [o, + a] . 



40 Math. Nachr. 172 (1995) 

If in addition 

(56) fn + f a.e. in E , 

then we have for  any t E [0, + 001 that 

(57) f :  -+ f '  a.e. in E ' .  

Proof.  Assume that (53), (54) are satisfied and let 6 > 0. We introduce the sets 

6 
co + (i + 

*I 2 
6 

Ni,:= ~ o + i - - f n I c ~ + ( i + l ) -  , i = o , l ,  ..., n = l , 2  ).... L 
From (47) it follows that 

IMi,(t)l I lNi,l, i = 0, 1, ..., n = 1,2, ..., 
and 

Further we conclude from (24) and (54) that for any i = 0, 1, . . . , 

This shows also that I{f' - f'. 2 S}l --* 0 as n -+ +a. Together with an analogue 
consideration for the sets {fl - f '  2 6) we derive (55). 

Now assume (53) and (56). For any c > co we set 

M : =  { f  > c}, M , : =  {f, > c}, n = 1,2, .... 
Then we get from Theorem 2 that for any t E [0, + 001 

,y(Mi) -+ x(M') a.e. in E ' .  

Since c was arbitrary, the assertion (57) follows. 

Theorem 7 (Continuity of the mapping t ++ f ' ) .  Let t,, n = 1,2, . . . , be any sequence con- 
verging to t E [O, + 001 and let f E F(R") be a.e. finite and bounded below. Then 

(58)  f f n  -+ f' in measure . 

If; moreover, f is continuous and the set 
t m  u {f'n ' C A  

n = l  
(59) 
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hasfinite L-measure, (with the number cf  defined by (40)), then 

(60) f fn -+ f '  everywhere in R" . 

P r o  of. Since f is bounded below, we conclude that C f  is finite. We choose some number 
6 > 0 and introduce the sets 

, i = O , 1 ,  ..., n = l , 2  ,.... 

From (47) it follows that IMi,,l I INi/ ,  i = 0, 1, ..., n = 1,2, ..., and 

Further we conclude from (33) that 

This shows also that I ( f '  - f'" 2 6}l + 0 as n --* + co. Together with an analogue con- 
sideration for the sets {ftn - f '  2 6 )  we derive (58). 

Now we assume that (59) holds and that f is continuous. Then the level sets 

{ f f ' > c } , ( f ' " > c } ,  n = l , 2  ) . . . )  c > C f ,  

are open, and the assertion (60) follows from (36). 

Now we show some integral relations between the symmetrized functions which are 
already known for the special cases t = + co. 

Theorem 8. Let t E [0, + co], let cp a n d y  be continuous functions with cp monotone increasing. 
I f f €  F(R"), then 

(61) (cp(f1)' df'). 
I f  ycf )  E L'(R"), then 
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Proof. (61)-(63) follow from the preservation of measure (47). Now we prove (64). 
First let f; g be step functions of the form 

m m 

f =  c + E C x(FJ, g = c + c C x(GJ, 
i =  1 i =  1 

(65) 

for measurable sets Pi 2 Fiil,  Gi 2 Gi+l ,  i = 1, ..., rn - 1, E > 0, c E R. Because of 
Theorem 1 we have that for any t E [0, + co] 

m 

S Ifl(x) - g'(x)l dx = E c (IFiI + lGll - 2 IF: n GII) 
R" i = l  

m 

I E c (IFiI + IGil - 2 IFi n Gil) = J I.f(x) - g(x)l d x .  
i = l  R" 

If f ;  g E F(R"), then (64) follows by approximation. 

The following property is crucial for further considerations. 

contradicting (64). 
Next by means of (44) and (66) we get the inequalities 

J (f'(x) - g'(x) - C) dx I J cf(x) - g(x) - C) dx 
(f* > g f  +c1 { f > s + c )  

and 
J (g'(x) - f'(x) - C) dx I S (g(x) - f ( ~ )  - C) dx . 

(9'>Jt + c )  k ? > t + c )  

The addition of both inequalities yields (67). 

More general is the following result: 
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Theorem 9. Let j : R t  -+ R: be a continuous and convex function with j (0)  = 0, and assume 
that f ; g  E F(R"), j(lf - gl) E L'(R"). Then f o r  any t E [0, + 001 

(69) f j(lf'(x) - g'(x)l) dx I f j(lf(x) - g(x)l) dx . 
R" R" 

Proof.  We define a function h = h(c, z) ,  c 2 0, z 2 0, by 

if O S Z I C ,  io z - c  if C I Z .  
h(c, Z) := 

Therefore instead of (69) we have 

s h(G If%) - g'(x)l) dx 5 s 4 ,  If(x) - g(x)l) dx 
R" R" 

(70) 

Now assume that j E C 2  with j'(0) = 0. Then 

(71) j ( z )  = s A(c) h(c, z) dc ,  z 2 0 ,  
+ m  

0 

with A(z) = j"(z) 2 0. Then the assertion follows from (70) and (71) by superposition. 

follows from (64) and the above considerations. 

by approximation with convex C2-functions. 

Further, if j E C2 we can write j ( z )  = CIZ + j,(z) with CI 2 0 and j ; (O)  = 0. Then (69) 

Finally, if j is any continuous and convex function with j(0) = 0, the assertion follows 

Lemma 3 (Nonexpansivity of the mapping f + f' in LP(R")). Let f ;  g E F(R") n LP(R"), 
1 I p I + co. Then f o r  any t E [0, + 001 

(72) Ilf '  - g'IILP(R") 5 Ilf - gllLP(Rn). 

Proof.  For 1 I p < + co (72) follows from (69) taking j(z) = zp and in the limit case 
p = + 00 by approximation. 

The following lemma is well known in the case t = + co (see e.g. [7]) and is a special 
case of Theorem 10 in the following section. We give here an independent proof. 

Lemma 4 (Hardy-Littlewood-inequality). Let f; g E F(R") n L2(R"). Then for  any 
t E [O, + 001 

(73) s f'(4 g'(x) dx 2 f f(x) g(x) dx . 
R" R" 

Proof.  We have by (72) and (62) that 
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4. Inequalities for product-integrals and convolutions 

There are many examples of rearrangement inequalities for product-integrals and 
convolutions in the literature. Possibly the most general inequality of this kind appeared 
in 111 (see the remarks in the introduction). Since the authors already used the continuous 
symmetrization for simple cases, it is not surprising that the inequality can be extended on 
the whole scale of continuous Steiner-symmetrizations. 

Theorems 10. Let A E F+(R"), aij E R, 1 I i I k,  1 I j I 1. Then for any t E [0, + 001 

k 1 

(74) f ... s fi A (  aijxj) dx, ... dx, I j ... n f : (  ai jx j )  dxl ... dx,. 
R" R" i = l  j =  I R" R98 i= l  j - 1  

Remark 7. Theorem 10 is nontrivial only for k > 1. If k < 1 or if k = 1 and det (aij) = 0, 

be seen, if we change the variables to yi = aijxj and then use the fact that Sfi = s ff .) 
then both integrals in (74) diverge. If k = 1 and det (aij) + 0, then equality holds. 

I 

j =  1 

From (74) we can derive by specialization some rearrangement inequalities for product- 
integrals and convolutions which are well-known for the Steiner-symmetrization in the case 
t = + co and for other kinds of rearrangements, e.g., the Schwarz-symmetrization. 

Corollary 1. Let ui E Ff(R"), i = 1, . . . , m, m 2 2. Then for any t E [0, + 003 
m m 

f n uf(x)dx 2 f n ui(x)dx, 
R" i= 1 R" i = l  

(75) 

if one of the integrals in (75) converges. 
Corollary 2. Let g, h E F+(R"). Then for any t E [0, + co] 

if one of the integrals in (76) converges. 

Proof  of Theorem 10. First we observe that by Fubini's theorem it suffices to show 
(74) in the case n = 1. Further, as in the proof of Theorem 8, we can restrict ourselves to 
the case that the xs are step functions with a finite number of values. Then, after an easy 
calculation, (74) reduces to the case that the fi's are characteristic functions of measurable 
sets. Finally, by Theorem 7, it suffices to prove this inequality for the case that these 
measurable sets are finite unions bounded intervals. But for this we refer to the elegant 
proofin [l], Lemma 2.1., which makes use of Brunn's part of the Brunn-Minkowski-Theorem. 
We note here that, except for some change of the parameter t ,  the authors in [l] used 
the same kind of continuous symmetrization as in our article. Thus the theorem is 
proved. 
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5. Continuity of the symmetrized functions 

Lemma 1 is sufficient to prove continuity properties of the symmetrized functions. 

Theorem 11. Let f E F+(R") be continuous. Then the functions f', 0 I t I + co, are 

Further, if f is Lipschitz-continuous with Lipschitz-constant L, then the functions f', 

Proof .  Taking M' = {f' > cz}, N' = {f' > c,}, 0 < c1 < c2, 0 5 t I +co, in (38), 

min (1x1 - xzl:lf(xl) - f ( x d  2 E )  I min (Ixl - xzl:lf'(xl) - f'(x,)l 2 ~j , 

equicontinuous. 

0 5 t I + 00, are also Lipschitz-continuous with the same constant L. 

we get for any E > 0 and 0 I t I +co that 

and the assertion follows. 

Remark 8. The Lipschitz-continuity is in fact the "best" regularity which holds under 
continuous symmetrization of functions. This can be seen by symmetrizing a function 
f E C'(R) which is not quasiconcave. 

The functions f' and f in Figure 4b and 4c are no longer differentiable in the marked 
points. 

6. Another variant of continuous symmetrization 

In the following we give another definition of continuous symmetrization which is due 
to KAWOHL and MATANO ([2,3]). 

Definition 2.1'. Let M = (a, b), - 00 < a < b < + co, be a bounded open interval in R. 
Then the scale of intervals M' := (a', b'), 0 I t I + co, where 

1 
2 

I i ( b  - a)  if 0 <--la + bl < t ,  

is called the continuous symmetrization ZI of M .  
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Fig. 4a 

X 

Fig. 4 b 

__f 

X 

Fig. 4c 

The formulas (77) again yield the semigroup-property (7). Therefore we can define a new 
continuous symmetrization TI for L-measurable sets as in Section 2, and for functions as 
in Section 4 only by replacing the formulas (6) by (77). Most of the earlier proved properties 
hold with identical proofs. In the following we give the main differences. 

If M is a union of pairwise disjoint bounded open intervals given by formula (11), then 
(12) follows, and the intervals (fJ are disjoint for 

1 

2 
max {IS(Zj)l; IS(Z,)l} - - ( IZ j l  + l I k l ) : j ,  k = 1, ..., m, j 4 k 

Further we again can conclude the formulas (13)-(15), where the number t ,  is finite. 
More generally, if M E  M(R") is a bounded set, we obtain that M' N M *  for t 2 t* for 
some finite number t*. 
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If M is an unbounded open interval, then (16) is not true but (19) remains valid. 
Let M E  M(R“), II 2 2. Then the formulas (38) remain true. It is easy to show that the 

number S,(M‘) tends monotonically with t to zero, but we cannot find a simple formula 
like (39). 

Similar results are obtained for the centre of sets in R and for the centre of functions. 

Remark 9. Let in (1) the functional J be the Dirichlet-integral 
t u  

J ( u )  := J (0’)’ (x) dx , 
- a  

with K := {u E WA([ - a, +a]),  u 2 0}, a > 0. 
We want to compute J(u‘), 0 I t I + co, for quasiconcave functions 

u E K n C 2 ( [ - u ,  +a])  

in the case of the continuous symmetrization 11. 
1. Consider first a function u with u’(*a) = 0, and assume that the centres of the level 

sets { u  > c} are different positive numbers for any c > 0, (Figure 5). 
Then for any t E (0, + co] there is a number c( t )  > 0, such that u’ is symmetric with 

respect to 0 for values less than or equal to c( t )  and the graph of u‘ is a congruent shift to 
the left of the graph of u for values greater than or equal to c(t). A computation shows that 

1 
lim -c( t )  = 0. Therefore we get J(u’) - J ( u )  = o( t )  for a small t > 0, i.e., we have not a 
t + O  t 
sharp estimate of the form (2). 

2. Next let u be a function of the following form. 
There is a number co > 0 such that for any c E [0, cO] the level sets {u > c} are symmetric 

with respect to 0. Further u has a “plateau” at the value co, i.e., I{u = co}l > 0, and for 
c > co the centres of the level sets { u  > c} are different positive numbers, (Figure 6). 

Then it is easy that the values J(u‘) remain unchanged for a small t > 0. 
The above described effects were removed in [2] in the following way. 
In Example 1.: let d > 0 and u(a) = u(p) = d, - a  < a < p < a. Then if we first 

continuously symmetrize the graph of u only for values u 2 d with respect t o  the axis 

x = - (a  + p), we can derive for a small t > 0 an  estimate of the form ( 2 ) .  The same is 
1 
2 

X 

Fig. 5 
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Fig. 6 

true in Example2. if we take d > c.  However, this idea seems not to be applicable for 
dimensions n 2 2. 

This was the motivation for the author to introduce a new continuous symmetrization 
where the described pathologies do not occur. Indeed, using the continuous symmetrization 
based on Definition 2.1, we can obtain the sharp estimate (2) in both cases 1. and 2. The 
reason is that all the nonvanishing derivatives of u are already changed from the first 
moment t = 0 on. 

In a further paper we will prove inequalities of the form (2) where the integrand F contains 
derivatives of the symmetrized functions. 
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